1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
use std::ops::Index;

use crate::{grain::Grain, matrix::Matrix};
use halo2curves::FieldExt;

/// `State` is structure `T` sized field elements that are subjected to
/// permutation
#[derive(Clone, Debug, PartialEq)]
pub struct State<F: FieldExt, const T: usize>(pub(crate) [F; T]);

impl<F: FieldExt, const T: usize> Default for State<F, T> {
    /// The capacity value is 2**64 + (o − 1) where o the output length.
    fn default() -> Self {
        let mut state = [F::zero(); T];
        state[0] = F::from_u128(1 << 64);
        State(state)
    }
}

impl<F: FieldExt, const T: usize> State<F, T> {
    /// Applies sbox for all elements of the state.
    /// Only supports `alpha = 5` sbox case.
    pub(crate) fn sbox_full(&mut self) {
        for e in self.0.iter_mut() {
            let tmp = e.mul(*e);
            e.mul_assign(tmp);
            e.mul_assign(tmp);
        }
    }

    /// Partial round sbox applies sbox to the first element of the state.
    /// Only supports `alpha = 5` sbox case
    pub(crate) fn sbox_part(&mut self) {
        let tmp = self.0[0].mul(self.0[0]);
        self.0[0].mul_assign(tmp);
        self.0[0].mul_assign(tmp);
    }

    /// Adds constants to all elements of the state
    pub(crate) fn add_constants(&mut self, constants: &[F; T]) {
        for (e, constant) in self.0.iter_mut().zip(constants.iter()) {
            e.add_assign(constant)
        }
    }

    /// Only adds a constant to the first element of the state.It is used with
    /// optimized rounds constants where only single element is added in
    /// each partial round
    pub(crate) fn add_constant(&mut self, constant: &F) {
        self.0[0].add_assign(constant)
    }

    /// Copies elements of the state
    pub fn words(&self) -> [F; T] {
        self.0
    }

    /// Second element of the state is the result
    pub(crate) fn result(&self) -> F {
        self.0[1]
    }
}

/// `Spec` holds construction parameters as well as constants that are used in
/// permutation step. Constants are planned to be hardcoded once transcript
/// design matures. Number of partial rounds can be deriven from number of
/// constants.
#[derive(Debug, Clone)]
pub struct Spec<F: FieldExt, const T: usize, const RATE: usize> {
    pub(crate) r_f: usize,
    pub(crate) mds_matrices: MDSMatrices<F, T, RATE>,
    pub(crate) constants: OptimizedConstants<F, T>,
}

impl<F: FieldExt, const T: usize, const RATE: usize> Spec<F, T, RATE> {
    /// Number of full rounds
    pub fn r_f(&self) -> usize {
        self.r_f.clone()
    }
    /// Set of MDS Matrices used in permutation line
    pub fn mds_matrices(&self) -> &MDSMatrices<F, T, RATE> {
        &self.mds_matrices
    }
    /// Optimised round constants
    pub fn constants(&self) -> &OptimizedConstants<F, T> {
        &self.constants
    }
}

/// `OptimizedConstants` has round constants that are added each round. While
/// full rounds has T sized constants there is a single constant for each
/// partial round
#[derive(Debug, Clone)]
pub struct OptimizedConstants<F: FieldExt, const T: usize> {
    pub(crate) start: Vec<[F; T]>,
    pub(crate) partial: Vec<F>,
    pub(crate) end: Vec<[F; T]>,
}

impl<F: FieldExt, const T: usize> OptimizedConstants<F, T> {
    /// Returns rounds constants for first part of full rounds
    pub fn start(&self) -> &Vec<[F; T]> {
        &self.start
    }

    /// Returns rounds constants for partial rounds
    pub fn partial(&self) -> &Vec<F> {
        &self.partial
    }

    /// Returns rounds constants for second part of full rounds
    pub fn end(&self) -> &Vec<[F; T]> {
        &self.end
    }
}

/// `MDSMatrices` holds the MDS matrix as well as transition matrix which is
/// also called `pre_sparse_mds` and sparse matrices that enables us to reduce
/// number of multiplications in apply MDS step
#[derive(Debug, Clone)]
pub struct MDSMatrices<F: FieldExt, const T: usize, const RATE: usize> {
    pub(crate) mds: MDSMatrix<F, T, RATE>,
    pub(crate) pre_sparse_mds: MDSMatrix<F, T, RATE>,
    pub(crate) sparse_matrices: Vec<SparseMDSMatrix<F, T, RATE>>,
}

impl<F: FieldExt, const T: usize, const RATE: usize> MDSMatrices<F, T, RATE> {
    /// Returns original MDS matrix
    pub fn mds(&self) -> &MDSMatrix<F, T, RATE> {
        &self.mds
    }

    /// Returns transition matrix for sparse trick
    pub fn pre_sparse_mds(&self) -> &MDSMatrix<F, T, RATE> {
        &self.pre_sparse_mds
    }

    /// Returns sparse matrices for partial rounds
    pub fn sparse_matrices(&self) -> &Vec<SparseMDSMatrix<F, T, RATE>> {
        &self.sparse_matrices
    }
}

/// `MDSMatrix` is applied to `State` to achive linear layer of Poseidon
#[derive(Clone, Debug)]
pub struct MDSMatrix<F: FieldExt, const T: usize, const RATE: usize>(pub(crate) Matrix<F, T>);

impl<F: FieldExt, const T: usize, const RATE: usize> Index<usize> for MDSMatrix<F, T, RATE> {
    type Output = [F; T];

    fn index(&self, idx: usize) -> &Self::Output {
        &self.0 .0[idx]
    }
}

impl<F: FieldExt, const T: usize, const RATE: usize> MDSMatrix<F, T, RATE> {
    /// Applies `MDSMatrix` to the state
    pub(crate) fn apply(&self, state: &mut State<F, T>) {
        state.0 = self.0.mul_vector(&state.0);
    }

    /// Given two `T` sized vector constructs the `t * t` Cauchy matrix
    pub(super) fn cauchy(xs: &[F; T], ys: &[F; T]) -> Self {
        let mut m = Matrix::default();
        for (i, x) in xs.iter().enumerate() {
            for (j, y) in ys.iter().enumerate() {
                let sum = *x + *y;
                debug_assert!(!sum.is_zero_vartime());
                m.set(i, j, sum.invert().unwrap());
            }
        }
        MDSMatrix(m)
    }

    /// Inverts the MDS matrix
    fn invert(&self) -> Self {
        Self(self.0.invert())
    }

    /// Used in calculation of optimized round constants. Calculates `v' = M *
    /// v` where vectors are `T` sized
    fn mul_constants(&self, v: &[F; T]) -> [F; T] {
        self.0.mul_vector(v)
    }

    /// Multiplies two MDS matrices. Used in sparse matrix calculations
    fn mul(&self, other: &Self) -> Self {
        Self(self.0.mul(&other.0))
    }

    fn transpose(&self) -> Self {
        Self(self.0.transpose())
    }

    /// See Section B in Supplementary Material https://eprint.iacr.org/2019/458.pdf
    /// Factorises an MDS matrix `M` into `M'` and `M''` where `M = M' *  M''`.
    /// Resulted `M''` matrices are the sparse ones while `M'` will contribute
    /// to the accumulator of the process
    fn factorise(&self) -> (Self, SparseMDSMatrix<F, T, RATE>) {
        // Given `(t-1 * t-1)` MDS matrix called `hat` constructs the matrix in
        // form `[[1 | 0], [0 | m]]`
        let prime = |hat: Matrix<F, RATE>| -> MDSMatrix<F, T, RATE> {
            let mut prime = Matrix::identity();
            for (prime_row, hat_row) in prime.0.iter_mut().skip(1).zip(hat.0.iter()) {
                for (el_prime, el_hat) in prime_row.iter_mut().skip(1).zip(hat_row.iter()) {
                    *el_prime = *el_hat;
                }
            }
            Self(prime)
        };

        // Given `(t-1)` sized `w_hat` vector constructs the matrix in form
        // `[[m_0_0 | m_0_i], [w_hat | identity]]`
        let prime_prime = |w_hat: [F; RATE]| -> Self {
            let mut prime_prime = Matrix::identity();
            prime_prime.0[0] = self.0 .0[0];
            for (row, w) in prime_prime.0.iter_mut().skip(1).zip(w_hat.iter()) {
                row[0] = *w
            }
            Self(prime_prime)
        };

        let w = self.0.w();
        let m_hat = self.0.sub::<RATE>();
        let m_hat_inverse = m_hat.invert();
        let w_hat = m_hat_inverse.mul_vector(&w);
        (prime(m_hat), prime_prime(w_hat).transpose().into())
    }

    /// Returns rows of the MDS matrix
    pub fn rows(&self) -> [[F; T]; T] {
        self.0 .0
    }
}

/// `SparseMDSMatrix` are in `[row], [hat | identity]` form and used in linear
/// layer of partial rounds instead of the original MDS
#[derive(Debug, Clone)]
pub struct SparseMDSMatrix<F: FieldExt, const T: usize, const RATE: usize> {
    pub(crate) row: [F; T],
    pub(crate) col_hat: [F; RATE],
}

impl<F: FieldExt, const T: usize, const RATE: usize> SparseMDSMatrix<F, T, RATE> {
    /// Returns the first row
    pub fn row(&self) -> &[F; T] {
        &self.row
    }

    /// Returns the first column without first element in the first row
    pub fn col_hat(&self) -> &[F; RATE] {
        &self.col_hat
    }

    /// Applies the sparse MDS matrix to the state
    pub(crate) fn apply(&self, state: &mut State<F, T>) {
        let words = state.words();
        state.0[0] = self
            .row
            .iter()
            .zip(words.iter())
            .fold(F::zero(), |acc, (e, cell)| acc + (*e * *cell));

        for ((new_word, col_el), word) in (state.0)
            .iter_mut()
            .skip(1)
            .zip(self.col_hat.iter())
            .zip(words.iter().skip(1))
        {
            *new_word = *col_el * words[0] + word;
        }
    }
}

impl<F: FieldExt, const T: usize, const RATE: usize> From<MDSMatrix<F, T, RATE>>
    for SparseMDSMatrix<F, T, RATE>
{
    /// Assert the form and represent an MDS matrix as a sparse MDS matrix
    fn from(mds: MDSMatrix<F, T, RATE>) -> Self {
        let mds = mds.0;
        for (i, row) in mds.0.iter().enumerate().skip(1) {
            for (j, _) in row.iter().enumerate().skip(1) {
                assert_eq!(row[j], if i != j { F::zero() } else { F::one() });
            }
        }

        let (mut row, mut col_hat) = ([F::zero(); T], [F::zero(); RATE]);
        for (row_el, el) in row.iter_mut().zip(mds.0[0].iter()) {
            *row_el = *el
        }
        for (col_el, row) in col_hat.iter_mut().zip(mds.0.iter().skip(1)) {
            *col_el = row[0]
        }

        SparseMDSMatrix { row, col_hat }
    }
}

impl<F: FieldExt, const T: usize, const RATE: usize> Spec<F, T, RATE> {
    /// Given number of round parameters constructs new Posedion instance
    /// calculating unoptimized round constants with reference `Grain` then
    /// calculates optimized constants and sparse matrices
    pub fn new(r_f: usize, r_p: usize) -> Self {
        let (unoptimized_constants, mds) = Grain::generate(r_f, r_p);
        let constants = Self::calculate_optimized_constants(r_f, r_p, unoptimized_constants, &mds);
        let (sparse_matrices, pre_sparse_mds) = Self::calculate_sparse_matrices(r_p, &mds);

        Self {
            r_f,
            constants,
            mds_matrices: MDSMatrices {
                mds,
                sparse_matrices,
                pre_sparse_mds,
            },
        }
    }

    fn calculate_optimized_constants(
        r_f: usize,
        r_p: usize,
        constants: Vec<[F; T]>,
        mds: &MDSMatrix<F, T, RATE>,
    ) -> OptimizedConstants<F, T> {
        let inverse_mds = mds.invert();
        let (number_of_rounds, r_f_half) = (r_f + r_p, r_f / 2);
        assert_eq!(constants.len(), number_of_rounds);

        // Calculate optimized constants for first half of the full rounds
        let mut constants_start: Vec<[F; T]> = vec![[F::zero(); T]; r_f_half];
        constants_start[0] = constants[0].clone();
        for (optimized, constants) in constants_start
            .iter_mut()
            .skip(1)
            .zip(constants.iter().skip(1))
        {
            *optimized = inverse_mds.mul_constants(constants);
        }

        // Calculate constants for partial rounds
        let mut acc = constants[r_f_half + r_p].clone();
        let mut constants_partial = vec![F::zero(); r_p];
        for (optimized, constants) in constants_partial
            .iter_mut()
            .rev()
            .zip(constants.iter().skip(r_f_half).rev().skip(r_f_half))
        {
            let mut tmp = inverse_mds.mul_constants(&acc);
            *optimized = tmp[0];

            tmp[0] = F::zero();
            for ((acc, tmp), constant) in acc
                .iter_mut()
                .zip(tmp.into_iter())
                .zip(constants.into_iter())
            {
                *acc = tmp + constant
            }
        }
        constants_start.push(inverse_mds.mul_constants(&acc));

        // Calculate optimized constants for ending half of the full rounds
        let mut constants_end: Vec<[F; T]> = vec![[F::zero(); T]; r_f_half - 1];
        for (optimized, constants) in constants_end
            .iter_mut()
            .zip(constants.iter().skip(r_f_half + r_p + 1))
        {
            *optimized = inverse_mds.mul_constants(constants);
        }

        OptimizedConstants {
            start: constants_start,
            partial: constants_partial,
            end: constants_end,
        }
    }

    fn calculate_sparse_matrices(
        r_p: usize,
        mds: &MDSMatrix<F, T, RATE>,
    ) -> (Vec<SparseMDSMatrix<F, T, RATE>>, MDSMatrix<F, T, RATE>) {
        let mds = mds.transpose();
        let mut acc = mds.clone();
        let mut sparse_matrices = (0..r_p)
            .map(|_| {
                let (m_prime, m_prime_prime) = acc.factorise();
                acc = mds.mul(&m_prime);
                m_prime_prime
            })
            .collect::<Vec<SparseMDSMatrix<F, T, RATE>>>();

        sparse_matrices.reverse();
        (sparse_matrices, acc.transpose())
    }
}

#[cfg(test)]
pub(super) mod tests {
    use halo2curves::FieldExt;

    use super::MDSMatrix;
    use crate::grain::Grain;

    /// We want to keep unoptimized parameters to cross test with optimized one
    pub(crate) struct SpecRef<F: FieldExt, const T: usize, const RATE: usize> {
        pub(crate) r_f: usize,
        pub(crate) r_p: usize,
        pub(crate) mds: MDSMatrix<F, T, RATE>,
        pub(crate) constants: Vec<[F; T]>,
    }

    impl<F: FieldExt, const T: usize, const RATE: usize> SpecRef<F, T, RATE> {
        pub(crate) fn new(r_f: usize, r_p: usize) -> Self {
            let (constants, mds) = Grain::generate(r_f, r_p);

            SpecRef {
                r_f,
                r_p,
                mds,
                constants,
            }
        }
    }
}