1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
use crate::spec::MDSMatrix;
use halo2curves::FieldExt;
use std::marker::PhantomData;

/// Grain initializes round constants and MDS matrix at given sponge parameters
pub(super) struct Grain<F: FieldExt, const T: usize, const RATE: usize> {
    bit_sequence: Vec<bool>,
    _field: PhantomData<F>,
}

impl<F: FieldExt, const T: usize, const RATE: usize> Grain<F, T, RATE> {
    pub(crate) fn generate(r_f: usize, r_p: usize) -> (Vec<[F; T]>, MDSMatrix<F, T, RATE>) {
        debug_assert!(T > 1 && T == RATE + 1);

        // Support only prime field construction
        const FIELD_TYPE: u8 = 1u8;
        // Support only \alpha s-box
        const SBOX_TYPE: u8 = 0;

        let field_size = F::NUM_BITS;
        let n_bytes = F::Repr::default().as_ref().len();
        assert_eq!((field_size as f32 / 8.0).ceil() as usize, n_bytes);
        assert_eq!(r_f % 2, 0);

        // Pseudo random number generation. See:
        // Initialization of the Grain LFSR Used for Parameter Generation
        // Supplementary Material Section F
        // https://eprint.iacr.org/2019/458.pdf
        let mut bit_sequence: Vec<bool> = Vec::new();
        append_bits(&mut bit_sequence, 2, FIELD_TYPE);
        append_bits(&mut bit_sequence, 4, SBOX_TYPE);
        append_bits(&mut bit_sequence, 12, field_size);
        append_bits(&mut bit_sequence, 12, T as u32);
        append_bits(&mut bit_sequence, 10, r_f as u16);
        append_bits(&mut bit_sequence, 10, r_p as u16);
        append_bits(&mut bit_sequence, 30, 0b111111111111111111111111111111u128);
        debug_assert_eq!(bit_sequence.len(), 80);

        let mut grain: Grain<F, T, RATE> = Grain {
            bit_sequence,
            _field: PhantomData,
        };

        for _ in 0..160 {
            grain.new_bit();
        }
        assert_eq!(grain.bit_sequence.len(), 80);

        let number_of_rounds = r_p as usize + r_f as usize;
        let constants = (0..number_of_rounds)
            .map(|_| {
                let mut round_constants = [F::zero(); T];
                for c in round_constants.iter_mut() {
                    *c = grain.next_field_element();
                }
                round_constants
            })
            .collect::<Vec<[F; T]>>();

        let (mut xs, mut ys) = ([F::zero(); T], [F::zero(); T]);
        for x in xs.iter_mut() {
            *x = grain.next_field_element_without_rejection();
        }
        for y in ys.iter_mut() {
            *y = grain.next_field_element_without_rejection();
        }

        (constants, MDSMatrix::cauchy(&xs, &ys))
    }

    /// Credit: https://github.com/zcash/halo2/tree/main/halo2_gadgets/src/primitives/poseidon
    /// Returns the next field element from this Grain instantiation.
    pub(super) fn next_field_element(&mut self) -> F {
        // Loop until we get an element in the field.
        loop {
            let mut bytes = F::Repr::default();

            // Poseidon reference impl interprets the bits as a repr in MSB order, because
            // it's easy to do that in Python. Meanwhile, our field elements all use LSB
            // order. There's little motivation to diverge from the reference impl; these
            // are all constants, so we aren't introducing big-endianness into the rest of
            // the circuit (assuming unkeyed Poseidon, but we probably wouldn't want to
            // implement Grain inside a circuit, so we'd use a different round constant
            // derivation function there).
            let view = bytes.as_mut();
            for (i, bit) in self.take(F::NUM_BITS as usize).enumerate() {
                // If we diverged from the reference impl and interpreted the bits in LSB
                // order, we would remove this line.
                let i = F::NUM_BITS as usize - 1 - i;

                view[i / 8] |= if bit { 1 << (i % 8) } else { 0 };
            }

            if let Some(f) = F::from_repr_vartime(bytes) {
                break f;
            }
        }
    }

    /// Credit: https://github.com/zcash/halo2/tree/main/halo2_gadgets/src/primitives/poseidon
    /// Returns the next field element from this Grain instantiation, without
    /// using rejection sampling.
    pub(super) fn next_field_element_without_rejection(&mut self) -> F {
        let mut bytes = [0u8; 64];

        // Poseidon reference impl interprets the bits as a repr in MSB order, because
        // it's easy to do that in Python. Additionally, it does not use rejection
        // sampling in cases where the constants don't specifically need to be uniformly
        // random for security. We do not provide APIs that take a field-element-sized
        // array and reduce it modulo the field order, because those are unsafe APIs to
        // offer generally (accidentally using them can lead to divergence in consensus
        // systems due to not rejecting canonical forms).
        //
        // Given that we don't want to diverge from the reference implementation, we
        // hack around this restriction by serializing the bits into a 64-byte
        // array and then calling F::from_bytes_wide. PLEASE DO NOT COPY THIS
        // INTO YOUR OWN CODE!
        let view = bytes.as_mut();
        for (i, bit) in self.take(F::NUM_BITS as usize).enumerate() {
            // If we diverged from the reference impl and interpreted the bits in LSB
            // order, we would remove this line.
            let i = F::NUM_BITS as usize - 1 - i;

            view[i / 8] |= if bit { 1 << (i % 8) } else { 0 };
        }

        F::from_bytes_wide(&bytes)
    }

    fn new_bit(&mut self) -> bool {
        // See supplementary material Section F. Step 2.
        // https://eprint.iacr.org/2019/458.pdf
        let new_bit = vec![62, 51, 38, 23, 13usize]
            .iter()
            .fold(self.bit_sequence[0], |acc, pos| {
                acc ^ self.bit_sequence[*pos]
            });
        assert_eq!(self.bit_sequence.len(), 80);
        self.bit_sequence.remove(0);
        self.bit_sequence.push(new_bit);
        new_bit
    }
}

impl<F: FieldExt, const T: usize, const RATE: usize> Iterator for Grain<F, T, RATE> {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        while !self.new_bit() {
            self.new_bit();
        }
        Some(self.new_bit())
    }
}

fn append_bits<T: Into<u128>>(vec: &mut Vec<bool>, n: usize, from: T) {
    let val = from.into() as u128;
    for i in (0..n).rev() {
        vec.push((val >> i) & 1 != 0);
    }
}