1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
use core::convert::TryInto;
use core::fmt;
use core::ops::{Add, Mul, Neg, Sub};

use ff::PrimeField;
use rand::RngCore;
use serde::{Deserialize, Serialize};
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};

use crate::arithmetic::{adc, mac, macx, sbb};

use pasta_curves::arithmetic::{FieldExt, Group, SqrtRatio};

/// This represents an element of $\mathbb{F}_q$ where
///
/// `q = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141`
///
/// is the scalar field of the secp256k1 curve.
// The internal representation of this type is four 64-bit unsigned
// integers in little-endian order. `Fq` values are always in
// Montgomery form; i.e., Fq(a) = aR mod q, with R = 2^256.
#[derive(Clone, Copy, Eq, PartialEq, Hash, Serialize, Deserialize)]
pub struct Fq(pub(crate) [u64; 4]);

/// Constant representing the modulus
/// q = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
const MODULUS: Fq = Fq([
    0xbfd25e8cd0364141,
    0xbaaedce6af48a03b,
    0xfffffffffffffffe,
    0xffffffffffffffff,
]);

/// The modulus as u32 limbs.
#[cfg(not(target_pointer_width = "64"))]
const MODULUS_LIMBS_32: [u32; 8] = [
    0xd036_4141,
    0xbfd2_5e8c,
    0xaf48_a03b,
    0xbaae_dce6,
    0xffff_fffe,
    0xffff_ffff,
    0xffff_ffff,
    0xffff_ffff,
];

///Constant representing the modulus as static str
const MODULUS_STR: &str = "0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141";

/// INV = -(q^{-1} mod 2^64) mod 2^64
const INV: u64 = 0x4b0dff665588b13f;

/// R = 2^256 mod q
/// 0x14551231950b75fc4402da1732fc9bebf
const R: Fq = Fq([0x402da1732fc9bebf, 0x4551231950b75fc4, 0x1, 0]);

/// R^2 = 2^512 mod q
/// 0x9d671cd581c69bc5e697f5e45bcd07c6741496c20e7cf878896cf21467d7d140
const R2: Fq = Fq([
    0x896cf21467d7d140,
    0x741496c20e7cf878,
    0xe697f5e45bcd07c6,
    0x9d671cd581c69bc5,
]);

/// R^3 = 2^768 mod q
/// 0x555d800c18ef116db1b31347f1d0b2da0017648444d4322c7bc0cfe0e9ff41ed
const R3: Fq = Fq([
    0x7bc0cfe0e9ff41ed,
    0x0017648444d4322c,
    0xb1b31347f1d0b2da,
    0x555d800c18ef116d,
]);

/// `GENERATOR = 7 mod r` is a generator of the `q - 1` order multiplicative
/// subgroup, or in other words a primitive root of the field.
const GENERATOR: Fq = Fq::from_raw([0x07, 0x00, 0x00, 0x00]);

/// GENERATOR^t where t * 2^s + 1 = r
/// with t odd. In other words, this
/// is a 2^s root of unity.
/// `0xc1dc060e7a91986df9879a3fbc483a898bdeab680756045992f4b5402b052f2`
const ROOT_OF_UNITY: Fq = Fq::from_raw([
    0x992f4b5402b052f2,
    0x98bdeab680756045,
    0xdf9879a3fbc483a8,
    0xc1dc060e7a91986,
]);

/// 1 / ROOT_OF_UNITY mod q
const ROOT_OF_UNITY_INV: Fq = Fq::from_raw([
    0xb6fb30a0884f0d1c,
    0x77a275910aa413c3,
    0xefc7b0c75b8cbb72,
    0xfd3ae181f12d7096,
]);

/// 1 / 2 mod q
const TWO_INV: Fq = Fq::from_raw([
    0xdfe92f46681b20a1,
    0x5d576e7357a4501d,
    0xffffffffffffffff,
    0x7fffffffffffffff,
]);

const ZETA: Fq = Fq::zero();
const DELTA: Fq = Fq::zero();

use crate::{
    field_arithmetic, field_common, field_specific, impl_add_binop_specify_output,
    impl_binops_additive, impl_binops_additive_specify_output, impl_binops_multiplicative,
    impl_binops_multiplicative_mixed, impl_sub_binop_specify_output,
};
impl_binops_additive!(Fq, Fq);
impl_binops_multiplicative!(Fq, Fq);
field_common!(
    Fq,
    MODULUS,
    INV,
    MODULUS_STR,
    TWO_INV,
    ROOT_OF_UNITY_INV,
    DELTA,
    ZETA,
    R,
    R2,
    R3
);
field_arithmetic!(Fq, MODULUS, INV, dense);

impl Fq {
    pub const fn size() -> usize {
        32
    }
}

impl ff::Field for Fq {
    fn random(mut rng: impl RngCore) -> Self {
        Self::from_u512([
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
            rng.next_u64(),
        ])
    }

    fn zero() -> Self {
        Self::zero()
    }

    fn one() -> Self {
        Self::one()
    }

    fn double(&self) -> Self {
        self.double()
    }

    #[inline(always)]
    fn square(&self) -> Self {
        self.square()
    }

    /// Computes the square root of this element, if it exists.
    fn sqrt(&self) -> CtOption<Self> {
        crate::arithmetic::sqrt_tonelli_shanks(self, <Self as SqrtRatio>::T_MINUS1_OVER2)
    }

    /// Computes the multiplicative inverse of this element,
    /// failing if the element is zero.
    fn invert(&self) -> CtOption<Self> {
        let tmp = self.pow_vartime([
            0xbfd25e8cd036413f,
            0xbaaedce6af48a03b,
            0xfffffffffffffffe,
            0xffffffffffffffff,
        ]);

        CtOption::new(tmp, !self.ct_eq(&Self::zero()))
    }

    fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
        let mut res = Self::one();
        let mut found_one = false;
        for e in exp.as_ref().iter().rev() {
            for i in (0..64).rev() {
                if found_one {
                    res = res.square();
                }

                if ((*e >> i) & 1) == 1 {
                    found_one = true;
                    res *= self;
                }
            }
        }
        res
    }
}

impl ff::PrimeField for Fq {
    type Repr = [u8; 32];

    const NUM_BITS: u32 = 256;
    const CAPACITY: u32 = 255;
    const S: u32 = 6;

    fn from_repr(repr: Self::Repr) -> CtOption<Self> {
        let mut tmp = Fq([0, 0, 0, 0]);

        tmp.0[0] = u64::from_le_bytes(repr[0..8].try_into().unwrap());
        tmp.0[1] = u64::from_le_bytes(repr[8..16].try_into().unwrap());
        tmp.0[2] = u64::from_le_bytes(repr[16..24].try_into().unwrap());
        tmp.0[3] = u64::from_le_bytes(repr[24..32].try_into().unwrap());

        // Try to subtract the modulus
        let (_, borrow) = tmp.0[0].overflowing_sub(MODULUS.0[0]);
        let (_, borrow) = sbb(tmp.0[1], MODULUS.0[1], borrow);
        let (_, borrow) = sbb(tmp.0[2], MODULUS.0[2], borrow);
        let (_, borrow) = sbb(tmp.0[3], MODULUS.0[3], borrow);

        // If the element is smaller than MODULUS then the
        // subtraction will underflow, producing a borrow value
        // of 0xffff...ffff. Otherwise, it'll be zero.
        let is_some = (borrow as u8) & 1;

        // Convert to Montgomery form by computing
        // (a.R^0 * R^2) / R = a.R
        tmp *= &R2;

        CtOption::new(tmp, Choice::from(is_some))
    }

    fn to_repr(&self) -> Self::Repr {
        // Turn into canonical form by computing
        // (a.R) / R = a
        let tmp = Fq::montgomery_reduce_short(self.0[0], self.0[1], self.0[2], self.0[3]);

        let mut res = [0; 32];
        res[0..8].copy_from_slice(&tmp.0[0].to_le_bytes());
        res[8..16].copy_from_slice(&tmp.0[1].to_le_bytes());
        res[16..24].copy_from_slice(&tmp.0[2].to_le_bytes());
        res[24..32].copy_from_slice(&tmp.0[3].to_le_bytes());

        res
    }

    fn is_odd(&self) -> Choice {
        Choice::from(self.to_repr()[0] & 1)
    }

    fn multiplicative_generator() -> Self {
        GENERATOR
    }

    fn root_of_unity() -> Self {
        ROOT_OF_UNITY
    }
}

impl SqrtRatio for Fq {
    const T_MINUS1_OVER2: [u64; 4] = [
        0x777fa4bd19a06c82,
        0xfd755db9cd5e9140,
        0xffffffffffffffff,
        0x01ffffffffffffff,
    ];

    fn get_lower_32(&self) -> u32 {
        let tmp = Fq::montgomery_reduce_short(self.0[0], self.0[1], self.0[2], self.0[3]);
        tmp.0[0] as u32
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use ff::Field;
    use rand_core::OsRng;

    #[test]
    fn test_sqrt() {
        // NB: TWO_INV is standing in as a "random" field element
        let v = (Fq::TWO_INV).square().sqrt().unwrap();
        assert!(v == Fq::TWO_INV || (-v) == Fq::TWO_INV);

        for _ in 0..10000 {
            let a = Fq::random(OsRng);
            let mut b = a;
            b = b.square();

            let b = b.sqrt().unwrap();
            let mut negb = b;
            negb = negb.neg();

            assert!(a == b || a == negb);
        }
    }

    #[test]
    fn test_root_of_unity() {
        assert_eq!(
            Fq::root_of_unity().pow_vartime([1 << Fq::S, 0, 0, 0]),
            Fq::one()
        );
    }

    #[test]
    fn test_inv_root_of_unity() {
        assert_eq!(Fq::ROOT_OF_UNITY_INV, Fq::root_of_unity().invert().unwrap());
    }

    #[test]
    fn test_field() {
        crate::tests::field::random_field_tests::<Fq>("secp256k1 scalar".to_string());
    }

    #[test]
    fn test_serialization() {
        crate::tests::field::random_serialization_test::<Fq>("secp256k1 scalar".to_string());
    }
}