1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
use std::marker::PhantomData;

use super::commitment::{IPACommitmentScheme, ParamsIPA, ParamsVerifierIPA};
use super::msm::MSMIPA;
use super::multiopen::VerifierIPA;
use crate::poly::commitment::CommitmentScheme;
use crate::transcript::TranscriptRead;
use crate::{
    arithmetic::best_multiexp,
    plonk::Error,
    poly::{
        commitment::MSM,
        strategy::{Guard, VerificationStrategy},
    },
    transcript::EncodedChallenge,
};
use ff::Field;
use group::Curve;
use halo2curves::CurveAffine;
use rand_core::{OsRng, RngCore};

/// Wrapper for verification accumulator
#[derive(Debug, Clone)]
pub struct GuardIPA<'params, C: CurveAffine> {
    pub(crate) msm: MSMIPA<'params, C>,
    pub(crate) neg_c: C::Scalar,
    pub(crate) u: Vec<C::Scalar>,
    pub(crate) u_packed: Vec<C::Scalar>,
}

/// An accumulator instance consisting of an evaluation claim and a proof.
#[derive(Debug, Clone)]
pub struct Accumulator<C: CurveAffine> {
    /// The claimed output of the linear-time polycommit opening protocol
    pub g: C,

    /// A vector of challenges u_0, ..., u_{k - 1} sampled by the verifier, to
    /// be used in computing G'_0.
    pub u_packed: Vec<C::Scalar>,
}

/// Define accumulator type as `MSMIPA`
impl<'params, C: CurveAffine> Guard<IPACommitmentScheme<C>> for GuardIPA<'params, C> {
    type MSMAccumulator = MSMIPA<'params, C>;
}

/// IPA specific operations
impl<'params, C: CurveAffine> GuardIPA<'params, C> {
    /// Lets caller supply the challenges and obtain an MSM with updated
    /// scalars and points.
    pub fn use_challenges(mut self) -> MSMIPA<'params, C> {
        let s = compute_s(&self.u, self.neg_c);
        self.msm.add_to_g_scalars(&s);

        self.msm
    }

    /// Lets caller supply the purported G point and simply appends
    /// [-c] G to return an updated MSM.
    pub fn use_g(mut self, g: C) -> (MSMIPA<'params, C>, Accumulator<C>) {
        self.msm.append_term(self.neg_c, g.into());

        let accumulator = Accumulator {
            g,
            u_packed: self.u_packed,
        };

        (self.msm, accumulator)
    }

    /// Computes G = ⟨s, params.g⟩
    pub fn compute_g(&self) -> C {
        let s = compute_s(&self.u, C::Scalar::one());

        best_multiexp(&s, &self.msm.params.g).to_affine()
    }
}

/// A verifier that checks multiple proofs in a batch.
#[derive(Debug)]
pub struct AccumulatorStrategy<'params, C: CurveAffine> {
    msm: MSMIPA<'params, C>,
}

impl<'params, C: CurveAffine>
    VerificationStrategy<'params, IPACommitmentScheme<C>, VerifierIPA<'params, C>>
    for AccumulatorStrategy<'params, C>
{
    type Output = Self;

    fn new(params: &'params ParamsIPA<C>) -> Self {
        AccumulatorStrategy {
            msm: MSMIPA::new(params),
        }
    }

    fn process(
        mut self,
        f: impl FnOnce(MSMIPA<'params, C>) -> Result<GuardIPA<'params, C>, Error>,
    ) -> Result<Self::Output, Error> {
        self.msm.scale(C::Scalar::random(OsRng));
        let guard = f(self.msm)?;

        Ok(Self {
            msm: guard.use_challenges(),
        })
    }

    /// Finalizes the batch and checks its validity.
    ///
    /// Returns `false` if *some* proof was invalid. If the caller needs to identify
    /// specific failing proofs, it must re-process the proofs separately.
    #[must_use]
    fn finalize(self) -> bool {
        self.msm.check()
    }
}

/// A verifier that checks single proof
#[derive(Debug)]
pub struct SingleStrategy<'params, C: CurveAffine> {
    msm: MSMIPA<'params, C>,
}

impl<'params, C: CurveAffine>
    VerificationStrategy<'params, IPACommitmentScheme<C>, VerifierIPA<'params, C>>
    for SingleStrategy<'params, C>
{
    type Output = ();

    fn new(params: &'params ParamsIPA<C>) -> Self {
        SingleStrategy {
            msm: MSMIPA::new(params),
        }
    }

    fn process(
        self,
        f: impl FnOnce(MSMIPA<'params, C>) -> Result<GuardIPA<'params, C>, Error>,
    ) -> Result<Self::Output, Error> {
        let guard = f(self.msm)?;
        let msm = guard.use_challenges();
        if msm.check() {
            Ok(())
        } else {
            Err(Error::ConstraintSystemFailure)
        }
    }

    /// Finalizes the batch and checks its validity.
    ///
    /// Returns `false` if *some* proof was invalid. If the caller needs to identify
    /// specific failing proofs, it must re-process the proofs separately.
    #[must_use]
    fn finalize(self) -> bool {
        unreachable!()
    }
}

/// Computes the coefficients of $g(X) = \prod\limits_{i=0}^{k-1} (1 + u_{k - 1 - i} X^{2^i})$.
fn compute_s<F: Field>(u: &[F], init: F) -> Vec<F> {
    assert!(!u.is_empty());
    let mut v = vec![F::zero(); 1 << u.len()];
    v[0] = init;

    for (len, u_j) in u.iter().rev().enumerate().map(|(i, u_j)| (1 << i, u_j)) {
        let (left, right) = v.split_at_mut(len);
        let right = &mut right[0..len];
        right.copy_from_slice(left);
        for v in right {
            *v *= u_j;
        }
    }

    v
}