1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use ff::Field;
use rand_core::RngCore;
use super::{Params, ParamsIPA};
use crate::arithmetic::{
best_multiexp, compute_inner_product, eval_polynomial, parallelize, CurveAffine, FieldExt,
};
use crate::poly::commitment::ParamsProver;
use crate::poly::{commitment::Blind, Coeff, Polynomial};
use crate::transcript::{EncodedChallenge, TranscriptWrite};
use group::Curve;
use std::io::{self, Write};
pub fn create_proof<
C: CurveAffine,
E: EncodedChallenge<C>,
R: RngCore,
T: TranscriptWrite<C, E>,
>(
params: &ParamsIPA<C>,
mut rng: R,
transcript: &mut T,
p_poly: &Polynomial<C::Scalar, Coeff>,
p_blind: Blind<C::Scalar>,
x_3: C::Scalar,
) -> io::Result<()> {
assert_eq!(p_poly.len(), params.n as usize);
let mut s_poly = (*p_poly).clone();
for coeff in s_poly.iter_mut() {
*coeff = C::Scalar::random(&mut rng);
}
let s_at_x3 = eval_polynomial(&s_poly[..], x_3);
s_poly[0] = s_poly[0] - &s_at_x3;
let s_poly_blind = Blind(C::Scalar::random(&mut rng));
let s_poly_commitment = params.commit(&s_poly, s_poly_blind).to_affine();
transcript.write_point(s_poly_commitment)?;
let xi = *transcript.squeeze_challenge_scalar::<()>();
let z = *transcript.squeeze_challenge_scalar::<()>();
let mut p_prime_poly = s_poly * xi + p_poly;
let v = eval_polynomial(&p_prime_poly, x_3);
p_prime_poly[0] = p_prime_poly[0] - &v;
let p_prime_blind = s_poly_blind * Blind(xi) + p_blind;
let mut f = p_prime_blind.0;
let mut p_prime = p_prime_poly.values;
assert_eq!(p_prime.len(), params.n as usize);
let mut b = Vec::with_capacity(1 << params.k);
{
let mut cur = C::Scalar::one();
for _ in 0..(1 << params.k) {
b.push(cur);
cur *= &x_3;
}
}
let mut g_prime = params.g.clone();
for j in 0..params.k {
let half = 1 << (params.k - j - 1); let l_j = best_multiexp(&p_prime[half..], &g_prime[0..half]);
let r_j = best_multiexp(&p_prime[0..half], &g_prime[half..]);
let value_l_j = compute_inner_product(&p_prime[half..], &b[0..half]);
let value_r_j = compute_inner_product(&p_prime[0..half], &b[half..]);
let l_j_randomness = C::Scalar::random(&mut rng);
let r_j_randomness = C::Scalar::random(&mut rng);
let l_j = l_j + &best_multiexp(&[value_l_j * &z, l_j_randomness], &[params.u, params.w]);
let r_j = r_j + &best_multiexp(&[value_r_j * &z, r_j_randomness], &[params.u, params.w]);
let l_j = l_j.to_affine();
let r_j = r_j.to_affine();
transcript.write_point(l_j)?;
transcript.write_point(r_j)?;
let u_j = *transcript.squeeze_challenge_scalar::<()>();
let u_j_inv = u_j.invert().unwrap(); for i in 0..half {
p_prime[i] = p_prime[i] + &(p_prime[i + half] * &u_j_inv);
b[i] = b[i] + &(b[i + half] * &u_j);
}
p_prime.truncate(half);
b.truncate(half);
parallel_generator_collapse(&mut g_prime, u_j);
g_prime.truncate(half);
f += &(l_j_randomness * &u_j_inv);
f += &(r_j_randomness * &u_j);
}
assert_eq!(p_prime.len(), 1);
let c = p_prime[0];
transcript.write_scalar(c)?;
transcript.write_scalar(f)?;
Ok(())
}
fn parallel_generator_collapse<C: CurveAffine>(g: &mut [C], challenge: C::Scalar) {
let len = g.len() / 2;
let (g_lo, g_hi) = g.split_at_mut(len);
parallelize(g_lo, |g_lo, start| {
let g_hi = &g_hi[start..];
let mut tmp = Vec::with_capacity(g_lo.len());
for (g_lo, g_hi) in g_lo.iter().zip(g_hi.iter()) {
tmp.push(g_lo.to_curve() + &(*g_hi * challenge));
}
C::Curve::batch_normalize(&tmp, g_lo);
});
}