1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use super::circuit::{Any, Column};
use crate::{
    arithmetic::CurveAffine,
    helpers::{
        polynomial_slice_byte_length, read_polynomial_vec, write_polynomial_slice,
        SerdeCurveAffine, SerdePrimeField,
    },
    poly::{Coeff, ExtendedLagrangeCoeff, LagrangeCoeff, Polynomial},
    SerdeFormat,
};
use ff::PrimeField;

pub(crate) mod keygen;
pub(crate) mod prover;
pub(crate) mod verifier;

use std::io;

/// A permutation argument.
#[derive(Debug, Clone)]
pub struct Argument {
    /// A sequence of columns involved in the argument.
    pub(super) columns: Vec<Column<Any>>,
}

impl Argument {
    pub(crate) fn new() -> Self {
        Argument { columns: vec![] }
    }

    /// Returns the minimum circuit degree required by the permutation argument.
    /// The argument may use larger degree gates depending on the actual
    /// circuit's degree and how many columns are involved in the permutation.
    pub(crate) fn required_degree(&self) -> usize {
        // degree 2:
        // l_0(X) * (1 - z(X)) = 0
        //
        // We will fit as many polynomials p_i(X) as possible
        // into the required degree of the circuit, so the
        // following will not affect the required degree of
        // this middleware.
        //
        // (1 - (l_last(X) + l_blind(X))) * (
        //   z(\omega X) \prod (p(X) + \beta s_i(X) + \gamma)
        // - z(X) \prod (p(X) + \delta^i \beta X + \gamma)
        // )
        //
        // On the first sets of columns, except the first
        // set, we will do
        //
        // l_0(X) * (z(X) - z'(\omega^(last) X)) = 0
        //
        // where z'(X) is the permutation for the previous set
        // of columns.
        //
        // On the final set of columns, we will do
        //
        // degree 3:
        // l_last(X) * (z'(X)^2 - z'(X)) = 0
        //
        // which will allow the last value to be zero to
        // ensure the argument is perfectly complete.

        // There are constraints of degree 3 regardless of the
        // number of columns involved.
        3
    }

    pub(crate) fn add_column(&mut self, column: Column<Any>) {
        if !self.columns.contains(&column) {
            self.columns.push(column);
        }
    }

    pub fn get_columns(&self) -> Vec<Column<Any>> {
        self.columns.clone()
    }
}

/// The verifying key for a single permutation argument.
#[derive(Clone, Debug)]
pub struct VerifyingKey<C: CurveAffine> {
    commitments: Vec<C>,
}

impl<C: CurveAffine> VerifyingKey<C> {
    /// Returns commitments of sigma polynomials
    pub fn commitments(&self) -> &Vec<C> {
        &self.commitments
    }

    pub(crate) fn write<W: io::Write>(&self, writer: &mut W, format: SerdeFormat)
    where
        C: SerdeCurveAffine,
    {
        for commitment in &self.commitments {
            commitment.write(writer, format);
        }
    }

    pub(crate) fn read<R: io::Read>(
        reader: &mut R,
        argument: &Argument,
        format: SerdeFormat,
    ) -> Self
    where
        C: SerdeCurveAffine,
    {
        let commitments = (0..argument.columns.len())
            .map(|_| C::read(reader, format))
            .collect();
        VerifyingKey { commitments }
    }

    pub(crate) fn bytes_length(&self) -> usize {
        self.commitments.len() * C::default().to_bytes().as_ref().len()
    }
}

/// The proving key for a single permutation argument.
#[derive(Clone, Debug)]
pub(crate) struct ProvingKey<C: CurveAffine> {
    permutations: Vec<Polynomial<C::Scalar, LagrangeCoeff>>,
    polys: Vec<Polynomial<C::Scalar, Coeff>>,
    pub(super) cosets: Vec<Polynomial<C::Scalar, ExtendedLagrangeCoeff>>,
}

impl<C: SerdeCurveAffine> ProvingKey<C>
where
    C::Scalar: SerdePrimeField,
{
    /// Reads proving key for a single permutation argument from buffer using `Polynomial::read`.  
    pub(super) fn read<R: io::Read>(reader: &mut R, format: SerdeFormat) -> Self {
        let permutations = read_polynomial_vec(reader, format);
        let polys = read_polynomial_vec(reader, format);
        let cosets = read_polynomial_vec(reader, format);
        ProvingKey {
            permutations,
            polys,
            cosets,
        }
    }

    /// Writes proving key for a single permutation argument to buffer using `Polynomial::write`.  
    pub(super) fn write<W: io::Write>(&self, writer: &mut W, format: SerdeFormat) {
        write_polynomial_slice(&self.permutations, writer, format);
        write_polynomial_slice(&self.polys, writer, format);
        write_polynomial_slice(&self.cosets, writer, format);
    }
}

impl<C: CurveAffine> ProvingKey<C> {
    /// Gets the total number of bytes in the serialization of `self`
    pub(super) fn bytes_length(&self) -> usize {
        polynomial_slice_byte_length(&self.permutations)
            + polynomial_slice_byte_length(&self.polys)
            + polynomial_slice_byte_length(&self.cosets)
    }
}