1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
use super::{
ec_add_unequal, ec_double, ec_select, ec_sub_unequal, into_strict_point, load_random_point,
strict_ec_select_from_bits, EcPoint,
};
use crate::{
ecc::ec_sub_strict,
fields::{FieldChip, PrimeField, Selectable},
};
use halo2_base::{
gates::{
builder::{parallelize_in, GateThreadBuilder},
GateInstructions,
},
utils::CurveAffineExt,
AssignedValue,
};
// Reference: https://jbootle.github.io/Misc/pippenger.pdf
// Reduction to multi-products
// Output:
// * new_points: length `points.len() * radix`
// * new_bool_scalars: 2d array `ceil(scalar_bits / radix)` by `points.len() * radix`
//
// Empirically `radix = 1` is best, so we don't use this function for now
/*
pub fn decompose<F, FC>(
chip: &FC,
ctx: &mut Context<F>,
points: &[EcPoint<F, FC::FieldPoint>],
scalars: &[Vec<AssignedValue<F>>],
max_scalar_bits_per_cell: usize,
radix: usize,
) -> (Vec<EcPoint<F, FC::FieldPoint>>, Vec<Vec<AssignedValue<F>>>)
where
F: PrimeField,
FC: FieldChip<F>,
{
assert_eq!(points.len(), scalars.len());
let scalar_bits = max_scalar_bits_per_cell * scalars[0].len();
let t = (scalar_bits + radix - 1) / radix;
let mut new_points = Vec::with_capacity(radix * points.len());
let mut new_bool_scalars = vec![Vec::with_capacity(radix * points.len()); t];
let zero_cell = ctx.load_zero();
for (point, scalar) in points.iter().zip(scalars.iter()) {
assert_eq!(scalars[0].len(), scalar.len());
let mut g = point.clone();
new_points.push(g);
for _ in 1..radix {
// if radix > 1, this does not work if `points` contains identity point
g = ec_double(chip, ctx, new_points.last().unwrap());
new_points.push(g);
}
let mut bits = Vec::with_capacity(scalar_bits);
for x in scalar {
let mut new_bits = chip.gate().num_to_bits(ctx, *x, max_scalar_bits_per_cell);
bits.append(&mut new_bits);
}
for k in 0..t {
new_bool_scalars[k]
.extend_from_slice(&bits[(radix * k)..std::cmp::min(radix * (k + 1), scalar_bits)]);
}
new_bool_scalars[t - 1].extend(vec![zero_cell.clone(); radix * t - scalar_bits]);
}
(new_points, new_bool_scalars)
}
*/
/* Left as reference; should always use msm_par
// Given points[i] and bool_scalars[j][i],
// compute G'[j] = sum_{i=0..points.len()} points[i] * bool_scalars[j][i]
// output is [ G'[j] + rand_point ]_{j=0..bool_scalars.len()}, rand_point
pub fn multi_product<F: PrimeField, FC, C>(
chip: &FC,
ctx: &mut Context<F>,
points: &[EcPoint<F, FC::FieldPoint>],
bool_scalars: &[Vec<AssignedValue<F>>],
clumping_factor: usize,
) -> (Vec<StrictEcPoint<F, FC>>, EcPoint<F, FC::FieldPoint>)
where
FC: FieldChip<F> + Selectable<F, FC::FieldPoint> + Selectable<F, FC::ReducedFieldPoint>,
C: CurveAffineExt<Base = FC::FieldType>,
{
let c = clumping_factor; // this is `b` in Section 3 of Bootle
// to avoid adding two points that are equal or negative of each other,
// we use a trick from halo2wrong where we load a random C point as witness
// note that while we load a random point, an adversary could load a specifically chosen point, so we must carefully handle edge cases with constraints
// TODO: an alternate approach is to use Fiat-Shamir transform (with Poseidon) to hash all the inputs (points, bool_scalars, ...) to get the random point. This could be worth it for large MSMs as we get savings from `add_unequal` in "non-strict" mode. Perhaps not worth the trouble / security concern, though.
let any_base = load_random_point::<F, FC, C>(chip, ctx);
let mut acc = Vec::with_capacity(bool_scalars.len());
let mut bucket = Vec::with_capacity(1 << c);
let mut any_point = any_base.clone();
for (round, points_clump) in points.chunks(c).enumerate() {
// compute all possible multi-products of elements in points[round * c .. round * (c+1)]
// for later addition collision-prevension, we need a different random point per round
// we take 2^round * rand_base
if round > 0 {
any_point = ec_double(chip, ctx, any_point);
}
// stores { rand_point, rand_point + points[0], rand_point + points[1], rand_point + points[0] + points[1] , ... }
// since rand_point is random, we can always use add_unequal (with strict constraint checking that the points are indeed unequal and not negative of each other)
bucket.clear();
let strict_any_point = into_strict_point(chip, ctx, any_point.clone());
bucket.push(strict_any_point);
for (i, point) in points_clump.iter().enumerate() {
// we allow for points[i] to be the point at infinity, represented by (0, 0) in affine coordinates
// this can be checked by points[i].y == 0 iff points[i] == O
let is_infinity = chip.is_zero(ctx, &point.y);
let point = into_strict_point(chip, ctx, point.clone());
for j in 0..(1 << i) {
let mut new_point = ec_add_unequal(chip, ctx, &bucket[j], &point, true);
// if points[i] is point at infinity, do nothing
new_point = ec_select(chip, ctx, (&bucket[j]).into(), new_point, is_infinity);
let new_point = into_strict_point(chip, ctx, new_point);
bucket.push(new_point);
}
}
// for each j, select using clump in e[j][i=...]
for (j, bits) in bool_scalars.iter().enumerate() {
let multi_prod = strict_ec_select_from_bits(
chip,
ctx,
&bucket,
&bits[round * c..round * c + points_clump.len()],
);
// since `bucket` is all `StrictEcPoint` and we are selecting from it, we know `multi_prod` is StrictEcPoint
// everything in bucket has already been enforced
if round == 0 {
acc.push(multi_prod);
} else {
let _acc = ec_add_unequal(chip, ctx, &acc[j], multi_prod, true);
acc[j] = into_strict_point(chip, ctx, _acc);
}
}
}
// we have acc[j] = G'[j] + (2^num_rounds - 1) * rand_base
any_point = ec_double(chip, ctx, any_point);
any_point = ec_sub_unequal(chip, ctx, any_point, any_base, false);
(acc, any_point)
}
/// Currently does not support if the final answer is actually the point at infinity (meaning constraints will fail in that case)
///
/// # Assumptions
/// * `points.len() == scalars.len()`
/// * `scalars[i].len() == scalars[j].len()` for all `i, j`
pub fn multi_exp<F: PrimeField, FC, C>(
chip: &FC,
ctx: &mut Context<F>,
points: &[EcPoint<F, FC::FieldPoint>],
scalars: Vec<Vec<AssignedValue<F>>>,
max_scalar_bits_per_cell: usize,
// radix: usize, // specialize to radix = 1
clump_factor: usize,
) -> EcPoint<F, FC::FieldPoint>
where
FC: FieldChip<F> + Selectable<F, FC::FieldPoint> + Selectable<F, FC::ReducedFieldPoint>,
C: CurveAffineExt<Base = FC::FieldType>,
{
// let (points, bool_scalars) = decompose::<F, _>(chip, ctx, points, scalars, max_scalar_bits_per_cell, radix);
debug_assert_eq!(points.len(), scalars.len());
let scalar_bits = max_scalar_bits_per_cell * scalars[0].len();
// bool_scalars: 2d array `scalar_bits` by `points.len()`
let mut bool_scalars = vec![Vec::with_capacity(points.len()); scalar_bits];
for scalar in scalars {
for (scalar_chunk, bool_chunk) in
scalar.into_iter().zip(bool_scalars.chunks_mut(max_scalar_bits_per_cell))
{
let bits = chip.gate().num_to_bits(ctx, scalar_chunk, max_scalar_bits_per_cell);
for (bit, bool_bit) in bits.into_iter().zip(bool_chunk.iter_mut()) {
bool_bit.push(bit);
}
}
}
let (mut agg, any_point) =
multi_product::<F, FC, C>(chip, ctx, points, &bool_scalars, clump_factor);
// everything in agg has been enforced
// compute sum_{k=0..t} agg[k] * 2^{radix * k} - (sum_k 2^{radix * k}) * rand_point
// (sum_{k=0..t} 2^{radix * k}) = (2^{radix * t} - 1)/(2^radix - 1)
let mut sum = agg.pop().unwrap().into();
let mut any_sum = any_point.clone();
for g in agg.iter().rev() {
any_sum = ec_double(chip, ctx, any_sum);
// cannot use ec_double_and_add_unequal because you cannot guarantee that `sum != g`
sum = ec_double(chip, ctx, sum);
sum = ec_add_unequal(chip, ctx, sum, g, true);
}
any_sum = ec_double(chip, ctx, any_sum);
// assume 2^scalar_bits != +-1 mod modulus::<F>()
any_sum = ec_sub_unequal(chip, ctx, any_sum, any_point, false);
ec_sub_unequal(chip, ctx, sum, any_sum, true)
}
*/
/// Multi-thread witness generation for multi-scalar multiplication.
///
/// # Assumptions
/// * `points.len() == scalars.len()`
/// * `scalars[i].len() == scalars[j].len()` for all `i, j`
/// * `points` are all on the curve or the point at infinity
/// * `points[i]` is allowed to be (0, 0) to represent the point at infinity (identity point)
/// * Currently implementation assumes that the only point on curve with y-coordinate equal to `0` is identity point
pub fn multi_exp_par<F: PrimeField, FC, C>(
chip: &FC,
// these are the "threads" within a single Phase
builder: &mut GateThreadBuilder<F>,
points: &[EcPoint<F, FC::FieldPoint>],
scalars: Vec<Vec<AssignedValue<F>>>,
max_scalar_bits_per_cell: usize,
// radix: usize, // specialize to radix = 1
clump_factor: usize,
phase: usize,
) -> EcPoint<F, FC::FieldPoint>
where
FC: FieldChip<F> + Selectable<F, FC::FieldPoint> + Selectable<F, FC::ReducedFieldPoint>,
C: CurveAffineExt<Base = FC::FieldType>,
{
// let (points, bool_scalars) = decompose::<F, _>(chip, ctx, points, scalars, max_scalar_bits_per_cell, radix);
assert_eq!(points.len(), scalars.len());
let scalar_bits = max_scalar_bits_per_cell * scalars[0].len();
// bool_scalars: 2d array `scalar_bits` by `points.len()`
let mut bool_scalars = vec![Vec::with_capacity(points.len()); scalar_bits];
// get a main thread
let ctx = builder.main(phase);
// single-threaded computation:
for scalar in scalars {
for (scalar_chunk, bool_chunk) in
scalar.into_iter().zip(bool_scalars.chunks_mut(max_scalar_bits_per_cell))
{
let bits = chip.gate().num_to_bits(ctx, scalar_chunk, max_scalar_bits_per_cell);
for (bit, bool_bit) in bits.into_iter().zip(bool_chunk.iter_mut()) {
bool_bit.push(bit);
}
}
}
let c = clump_factor;
let num_rounds = (points.len() + c - 1) / c;
// to avoid adding two points that are equal or negative of each other,
// we use a trick from halo2wrong where we load a "sufficiently generic" `C` point as witness
// note that while we load a random point, an adversary could load a specifically chosen point, so we must carefully handle edge cases with constraints
// we call it "any point" instead of "random point" to emphasize that "any" sufficiently generic point will do
let any_base = load_random_point::<F, FC, C>(chip, ctx);
let mut any_points = Vec::with_capacity(num_rounds);
any_points.push(any_base);
for _ in 1..num_rounds {
any_points.push(ec_double(chip, ctx, any_points.last().unwrap()));
}
// now begins multi-threading
// multi_prods is 2d vector of size `num_rounds` by `scalar_bits`
let multi_prods = parallelize_in(
phase,
builder,
points.chunks(c).into_iter().zip(any_points.iter()).enumerate().collect(),
|ctx, (round, (points_clump, any_point))| {
// compute all possible multi-products of elements in points[round * c .. round * (c+1)]
// stores { any_point, any_point + points[0], any_point + points[1], any_point + points[0] + points[1] , ... }
let mut bucket = Vec::with_capacity(1 << c);
let any_point = into_strict_point(chip, ctx, any_point.clone());
bucket.push(any_point);
for (i, point) in points_clump.iter().enumerate() {
// we allow for points[i] to be the point at infinity, represented by (0, 0) in affine coordinates
// this can be checked by points[i].y == 0 iff points[i] == O
let is_infinity = chip.is_zero(ctx, &point.y);
let point = into_strict_point(chip, ctx, point.clone());
for j in 0..(1 << i) {
let mut new_point = ec_add_unequal(chip, ctx, &bucket[j], &point, true);
// if points[i] is point at infinity, do nothing
new_point = ec_select(chip, ctx, (&bucket[j]).into(), new_point, is_infinity);
let new_point = into_strict_point(chip, ctx, new_point);
bucket.push(new_point);
}
}
bool_scalars
.iter()
.map(|bits| {
strict_ec_select_from_bits(
chip,
ctx,
&bucket,
&bits[round * c..round * c + points_clump.len()],
)
})
.collect::<Vec<_>>()
},
);
// agg[j] = sum_{i=0..num_rounds} multi_prods[i][j] for j = 0..scalar_bits
let mut agg = parallelize_in(phase, builder, (0..scalar_bits).collect(), |ctx, i| {
let mut acc = multi_prods[0][i].clone();
for multi_prod in multi_prods.iter().skip(1) {
let _acc = ec_add_unequal(chip, ctx, &acc, &multi_prod[i], true);
acc = into_strict_point(chip, ctx, _acc);
}
acc
});
// gets the LAST thread for single threaded work
let ctx = builder.main(phase);
// we have agg[j] = G'[j] + (2^num_rounds - 1) * any_base
// let any_point = (2^num_rounds - 1) * any_base
// TODO: can we remove all these random point operations somehow?
let mut any_point = ec_double(chip, ctx, any_points.last().unwrap());
any_point = ec_sub_unequal(chip, ctx, any_point, &any_points[0], true);
// compute sum_{k=0..scalar_bits} agg[k] * 2^k - (sum_{k=0..scalar_bits} 2^k) * rand_point
// (sum_{k=0..scalar_bits} 2^k) = (2^scalar_bits - 1)
let mut sum = agg.pop().unwrap().into();
let mut any_sum = any_point.clone();
for g in agg.iter().rev() {
any_sum = ec_double(chip, ctx, any_sum);
// cannot use ec_double_and_add_unequal because you cannot guarantee that `sum != g`
sum = ec_double(chip, ctx, sum);
sum = ec_add_unequal(chip, ctx, sum, g, true);
}
any_sum = ec_double(chip, ctx, any_sum);
any_sum = ec_sub_unequal(chip, ctx, any_sum, any_point, true);
ec_sub_strict(chip, ctx, sum, any_sum)
}