1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
//! Base library to build Halo2 circuits.
#![allow(incomplete_features)]
#![feature(generic_const_exprs)]
#![feature(const_cmp)]
#![feature(stmt_expr_attributes)]
#![feature(trait_alias)]
#![deny(clippy::perf)]
#![allow(clippy::too_many_arguments)]
#![warn(clippy::default_numeric_fallback)]
#![warn(missing_docs)]
// Different memory allocator options:
#[cfg(feature = "jemallocator")]
use jemallocator::Jemalloc;
#[cfg(feature = "jemallocator")]
#[global_allocator]
static GLOBAL: Jemalloc = Jemalloc;
// mimalloc is fastest on Mac M2
#[cfg(feature = "mimalloc")]
use mimalloc::MiMalloc;
#[cfg(feature = "mimalloc")]
#[global_allocator]
static GLOBAL: MiMalloc = MiMalloc;
#[cfg(all(feature = "halo2-pse", feature = "halo2-axiom"))]
compile_error!(
"Cannot have both \"halo2-pse\" and \"halo2-axiom\" features enabled at the same time!"
);
#[cfg(not(any(feature = "halo2-pse", feature = "halo2-axiom")))]
compile_error!("Must enable exactly one of \"halo2-pse\" or \"halo2-axiom\" features to choose which halo2_proofs crate to use.");
// use gates::flex_gate::MAX_PHASE;
#[cfg(feature = "halo2-pse")]
pub use halo2_proofs;
#[cfg(feature = "halo2-axiom")]
pub use halo2_proofs_axiom as halo2_proofs;
use halo2_proofs::plonk::Assigned;
use utils::ScalarField;
/// Module that contains the main API for creating and working with circuits.
pub mod gates;
/// Module for SafeType which enforce value range and realted functions.
pub mod safe_types;
/// Utility functions for converting between different types of field elements.
pub mod utils;
/// Constant representing whether the Layouter calls `synthesize` once just to get region shape.
#[cfg(feature = "halo2-axiom")]
pub const SKIP_FIRST_PASS: bool = false;
/// Constant representing whether the Layouter calls `synthesize` once just to get region shape.
#[cfg(feature = "halo2-pse")]
pub const SKIP_FIRST_PASS: bool = true;
/// Convenience Enum which abstracts the scenarios under a value is added to an advice column.
#[derive(Clone, Copy, Debug)]
pub enum QuantumCell<F: ScalarField> {
/// An [AssignedValue] already existing in the advice column (e.g., a witness value that was already assigned in a previous cell in the column).
/// * Assigns a new cell into the advice column with value equal to the value of a.
/// * Imposes an equality constraint between the new cell and the cell of a so the Verifier guarantees that these two cells are always equal.
Existing(AssignedValue<F>),
// This is a guard for witness values assigned after pkey generation. We do not use `Value` api anymore.
/// A non-existing witness [ScalarField] value (e.g. private input) to add to an advice column.
Witness(F),
/// A non-existing witness [ScalarField] marked as a fraction for optimization in batch inversion later.
WitnessFraction(Assigned<F>),
/// A known constant value added as a witness value to the advice column and added to the "Fixed" column during circuit creation time.
/// * Visible to both the Prover and the Verifier.
/// * Imposes an equality constraint between the two corresponding cells in the advice and fixed columns.
Constant(F),
}
impl<F: ScalarField> From<AssignedValue<F>> for QuantumCell<F> {
/// Converts an [AssignedValue<F>] into a [QuantumCell<F>] of [type Existing(AssignedValue<F>)]
fn from(a: AssignedValue<F>) -> Self {
Self::Existing(a)
}
}
impl<F: ScalarField> QuantumCell<F> {
/// Returns an immutable reference to the underlying [ScalarField] value of a QuantumCell<F>.
///
/// Panics if the QuantumCell<F> is of type WitnessFraction.
pub fn value(&self) -> &F {
match self {
Self::Existing(a) => a.value(),
Self::Witness(a) => a,
Self::WitnessFraction(_) => {
panic!("Trying to get value of a fraction before batch inversion")
}
Self::Constant(a) => a,
}
}
}
/// Pointer to the position of a cell at `offset` in an advice column within a [Context] of `context_id`.
#[derive(Clone, Copy, Debug)]
pub struct ContextCell {
/// Identifier of the [Context] that this cell belongs to.
pub context_id: usize,
/// Relative offset of the cell within this [Context] advice column.
pub offset: usize,
}
/// Pointer containing cell value and location within [Context].
///
/// Note: Performs a copy of the value, should only be used when you are about to assign the value again elsewhere.
#[derive(Clone, Copy, Debug)]
pub struct AssignedValue<F: ScalarField> {
/// Value of the cell.
pub value: Assigned<F>, // we don't use reference to avoid issues with lifetimes (you can't safely borrow from vector and push to it at the same time).
// only needed during vkey, pkey gen to fetch the actual cell from the relevant context
/// [ContextCell] pointer to the cell the value is assigned to within an advice column of a [Context].
pub cell: Option<ContextCell>,
}
impl<F: ScalarField> AssignedValue<F> {
/// Returns an immutable reference to the underlying value of an AssignedValue<F>.
///
/// Panics if the AssignedValue<F> is of type WitnessFraction.
pub fn value(&self) -> &F {
match &self.value {
Assigned::Trivial(a) => a,
_ => unreachable!(), // if trying to fetch an un-evaluated fraction, you will have to do something manual
}
}
}
/// Represents a single thread of an execution trace.
/// * We keep the naming [Context] for historical reasons.
#[derive(Clone, Debug)]
pub struct Context<F: ScalarField> {
/// Flag to determine whether only witness generation or proving and verification key generation is being performed.
/// * If witness gen is performed many operations can be skipped for optimization.
witness_gen_only: bool,
/// Identifier to reference cells from this [Context].
pub context_id: usize,
/// Single column of advice cells.
pub advice: Vec<Assigned<F>>,
/// [Vec] tracking all cells that lookup is enabled for.
/// * When there is more than 1 advice column all `advice` cells will be copied to a single lookup enabled column to perform lookups.
pub cells_to_lookup: Vec<AssignedValue<F>>,
/// Cell that represents the zero value as AssignedValue<F>
pub zero_cell: Option<AssignedValue<F>>,
// To save time from re-allocating new temporary vectors that get quickly dropped (e.g., for some range checks), we keep a vector with high capacity around that we `clear` before use each time
// This is NOT THREAD SAFE
// Need to use RefCell to avoid borrow rules
// Need to use Rc to borrow this and mutably borrow self at same time
// preallocated_vec_to_assign: Rc<RefCell<Vec<AssignedValue<'a, F>>>>,
// ========================================
// General principle: we don't need to optimize anything specific to `witness_gen_only == false` because it is only done during keygen
// If `witness_gen_only == false`:
/// [Vec] representing the selector column of this [Context] accompanying each `advice` column
/// * Assumed to have the same length as `advice`
pub selector: Vec<bool>,
// TODO: gates that use fixed columns as selectors?
/// A [Vec] tracking equality constraints between pairs of [Context] `advice` cells.
///
/// Assumes both `advice` cells are in the same [Context].
pub advice_equality_constraints: Vec<(ContextCell, ContextCell)>,
/// A [Vec] tracking pairs equality constraints between Fixed values and [Context] `advice` cells.
///
/// Assumes the constant and `advice` cell are in the same [Context].
pub constant_equality_constraints: Vec<(F, ContextCell)>,
}
impl<F: ScalarField> Context<F> {
/// Creates a new [Context] with the given `context_id` and witness generation enabled/disabled by the `witness_gen_only` flag.
/// * `witness_gen_only`: flag to determine whether public key generation or only witness generation is being performed.
/// * `context_id`: identifier to reference advice cells from this [Context] later.
pub fn new(witness_gen_only: bool, context_id: usize) -> Self {
Self {
witness_gen_only,
context_id,
advice: Vec::new(),
cells_to_lookup: Vec::new(),
zero_cell: None,
selector: Vec::new(),
advice_equality_constraints: Vec::new(),
constant_equality_constraints: Vec::new(),
}
}
/// Returns the `witness_gen_only` flag of the [Context]
pub fn witness_gen_only(&self) -> bool {
self.witness_gen_only
}
/// Pushes a [QuantumCell<F>] to the end of the `advice` column ([Vec] of advice cells) in this [Context].
/// * `input`: the cell to be assigned.
pub fn assign_cell(&mut self, input: impl Into<QuantumCell<F>>) {
// Determine the type of the cell and push it to the relevant vector
match input.into() {
QuantumCell::Existing(acell) => {
self.advice.push(acell.value);
// If witness generation is not performed, enforce equality constraints between the existing cell and the new cell
if !self.witness_gen_only {
let new_cell =
ContextCell { context_id: self.context_id, offset: self.advice.len() - 1 };
self.advice_equality_constraints.push((new_cell, acell.cell.unwrap()));
}
}
QuantumCell::Witness(val) => {
self.advice.push(Assigned::Trivial(val));
}
QuantumCell::WitnessFraction(val) => {
self.advice.push(val);
}
QuantumCell::Constant(c) => {
self.advice.push(Assigned::Trivial(c));
// If witness generation is not performed, enforce equality constraints between the existing cell and the new cell
if !self.witness_gen_only {
let new_cell =
ContextCell { context_id: self.context_id, offset: self.advice.len() - 1 };
self.constant_equality_constraints.push((c, new_cell));
}
}
}
}
/// Returns the [AssignedValue] of the last cell in the `advice` column of [Context] or [None] if `advice` is empty
pub fn last(&self) -> Option<AssignedValue<F>> {
self.advice.last().map(|v| {
let cell = (!self.witness_gen_only).then_some(ContextCell {
context_id: self.context_id,
offset: self.advice.len() - 1,
});
AssignedValue { value: *v, cell }
})
}
/// Returns the [AssignedValue] of the cell at the given `offset` in the `advice` column of [Context]
/// * `offset`: the offset of the cell to be fetched
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last cell)
/// * Assumes `offset` is a valid index in `advice`;
/// * `0` <= `offset` < `advice.len()` (or `advice.len() + offset >= 0` if `offset` is negative)
pub fn get(&self, offset: isize) -> AssignedValue<F> {
let offset = if offset < 0 {
self.advice.len().wrapping_add_signed(offset)
} else {
offset as usize
};
assert!(offset < self.advice.len());
let cell =
(!self.witness_gen_only).then_some(ContextCell { context_id: self.context_id, offset });
AssignedValue { value: self.advice[offset], cell }
}
/// Creates an equality constraint between two `advice` cells.
/// * `a`: the first `advice` cell to be constrained equal
/// * `b`: the second `advice` cell to be constrained equal
/// * Assumes both cells are `advice` cells
pub fn constrain_equal(&mut self, a: &AssignedValue<F>, b: &AssignedValue<F>) {
if !self.witness_gen_only {
self.advice_equality_constraints.push((a.cell.unwrap(), b.cell.unwrap()));
}
}
/// Pushes multiple advice cells to the `advice` column of [Context] and enables them by enabling the corresponding selector specified in `gate_offset`.
///
/// * `inputs`: Iterator that specifies the cells to be assigned
/// * `gate_offsets`: specifies relative offset from current position to enable selector for the gate (e.g., `0` is inputs[0]).
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last previously assigned cell)
pub fn assign_region<Q>(
&mut self,
inputs: impl IntoIterator<Item = Q>,
gate_offsets: impl IntoIterator<Item = isize>,
) where
Q: Into<QuantumCell<F>>,
{
if self.witness_gen_only {
for input in inputs {
self.assign_cell(input);
}
} else {
let row_offset = self.advice.len();
// note: row_offset may not equal self.selector.len() at this point if we previously used `load_constant` or `load_witness`
for input in inputs {
self.assign_cell(input);
}
self.selector.resize(self.advice.len(), false);
for offset in gate_offsets {
*self
.selector
.get_mut(row_offset.checked_add_signed(offset).expect("Invalid gate offset"))
.expect("Invalid selector offset") = true;
}
}
}
/// Pushes multiple advice cells to the `advice` column of [Context] and enables them by enabling the corresponding selector specified in `gate_offset` and returns the last assigned cell.
///
/// Assumes `gate_offsets` is the same length as `inputs`
///
/// Returns the last assigned cell
/// * `inputs`: Iterator that specifies the cells to be assigned
/// * `gate_offsets`: specifies indices to enable selector for the gate; assume `gate_offsets` is sorted in increasing order
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last cell)
pub fn assign_region_last<Q>(
&mut self,
inputs: impl IntoIterator<Item = Q>,
gate_offsets: impl IntoIterator<Item = isize>,
) -> AssignedValue<F>
where
Q: Into<QuantumCell<F>>,
{
self.assign_region(inputs, gate_offsets);
self.last().unwrap()
}
/// Pushes multiple advice cells to the `advice` column of [Context] and enables them by enabling the corresponding selector specified in `gate_offset`.
///
/// Allows for the specification of equality constraints between cells at `equality_offsets` within the `advice` column and external advice cells specified in `external_equality` (e.g, Fixed column).
/// * `gate_offsets`: specifies indices to enable selector for the gate;
/// * `offset` may be negative indexing from the end of the column (e.g., `-1` is the last cell)
/// * `equality_offsets`: specifies pairs of indices to constrain equality
/// * `external_equality`: specifies an existing cell to constrain equality with the cell at a certain index
pub fn assign_region_smart<Q>(
&mut self,
inputs: impl IntoIterator<Item = Q>,
gate_offsets: impl IntoIterator<Item = isize>,
equality_offsets: impl IntoIterator<Item = (isize, isize)>,
external_equality: impl IntoIterator<Item = (Option<ContextCell>, isize)>,
) where
Q: Into<QuantumCell<F>>,
{
let row_offset = self.advice.len();
self.assign_region(inputs, gate_offsets);
// note: row_offset may not equal self.selector.len() at this point if we previously used `load_constant` or `load_witness`
// If not in witness generation mode, add equality constraints.
if !self.witness_gen_only {
// Add equality constraints between cells in the advice column.
for (offset1, offset2) in equality_offsets {
self.advice_equality_constraints.push((
ContextCell {
context_id: self.context_id,
offset: row_offset.wrapping_add_signed(offset1),
},
ContextCell {
context_id: self.context_id,
offset: row_offset.wrapping_add_signed(offset2),
},
));
}
// Add equality constraints between cells in the advice column and external cells (Fixed column).
for (cell, offset) in external_equality {
self.advice_equality_constraints.push((
cell.unwrap(),
ContextCell {
context_id: self.context_id,
offset: row_offset.wrapping_add_signed(offset),
},
));
}
}
}
/// Assigns a region of witness cells in an iterator and returns a [Vec] of assigned cells.
/// * `witnesses`: Iterator that specifies the cells to be assigned
pub fn assign_witnesses(
&mut self,
witnesses: impl IntoIterator<Item = F>,
) -> Vec<AssignedValue<F>> {
let row_offset = self.advice.len();
self.assign_region(witnesses.into_iter().map(QuantumCell::Witness), []);
self.advice[row_offset..]
.iter()
.enumerate()
.map(|(i, v)| {
let cell = (!self.witness_gen_only)
.then_some(ContextCell { context_id: self.context_id, offset: row_offset + i });
AssignedValue { value: *v, cell }
})
.collect()
}
/// Assigns a witness value and returns the corresponding assigned cell.
/// * `witness`: the witness value to be assigned
pub fn load_witness(&mut self, witness: F) -> AssignedValue<F> {
self.assign_cell(QuantumCell::Witness(witness));
if !self.witness_gen_only {
self.selector.resize(self.advice.len(), false);
}
self.last().unwrap()
}
/// Assigns a constant value and returns the corresponding assigned cell.
/// * `c`: the constant value to be assigned
pub fn load_constant(&mut self, c: F) -> AssignedValue<F> {
self.assign_cell(QuantumCell::Constant(c));
if !self.witness_gen_only {
self.selector.resize(self.advice.len(), false);
}
self.last().unwrap()
}
/// Assigns the 0 value to a new cell or returns a previously assigned zero cell from `zero_cell`.
pub fn load_zero(&mut self) -> AssignedValue<F> {
if let Some(zcell) = &self.zero_cell {
return *zcell;
}
let zero_cell = self.load_constant(F::zero());
self.zero_cell = Some(zero_cell);
zero_cell
}
}