1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
use crate::{
    gates::flex_gate::{FlexGateConfig, GateInstructions, GateStrategy, MAX_PHASE},
    halo2_proofs::{
        circuit::{Layouter, Value},
        plonk::{
            Advice, Column, ConstraintSystem, Error, SecondPhase, Selector, TableColumn, ThirdPhase,
        },
        poly::Rotation,
    },
    utils::{
        biguint_to_fe, bit_length, decompose_fe_to_u64_limbs, fe_to_biguint, BigPrimeField,
        ScalarField,
    },
    AssignedValue, Context,
    QuantumCell::{self, Constant, Existing, Witness},
};
use num_bigint::BigUint;
use num_integer::Integer;
use num_traits::One;
use std::{cmp::Ordering, ops::Shl};

use super::flex_gate::GateChip;

/// Specifies the gate strategy for the range chip
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RangeStrategy {
    /// # Vertical Gate Strategy:
    /// `q_0 * (a + b * c - d) = 0`
    /// where
    /// * a = value[0], b = value[1], c = value[2], d = value[3]
    /// * q = q_lookup[0]
    /// * q is either 0 or 1 so this is just a simple selector
    ///
    /// Using `a + b * c` instead of `a * b + c` allows for "chaining" of gates, i.e., the output of one gate becomes `a` in the next gate.
    Vertical, // vanilla implementation with vertical basic gate(s)
}

/// Configuration for Range Chip
#[derive(Clone, Debug)]
pub struct RangeConfig<F: ScalarField> {
    /// Underlying Gate Configuration
    pub gate: FlexGateConfig<F>,
    /// Special advice (witness) Columns used only for lookup tables.
    ///
    /// Each phase of a halo2 circuit has a distinct lookup_advice column.
    ///
    /// * If `gate` has only 1 advice column, lookups are enabled for that column, in which case `lookup_advice` is empty
    /// * If `gate` has more than 1 advice column some number of user-specified `lookup_advice` columns are added
    ///     * In this case, we don't need a selector so `q_lookup` is empty
    pub lookup_advice: [Vec<Column<Advice>>; MAX_PHASE],
    /// Selector values for the lookup table.
    pub q_lookup: Vec<Option<Selector>>,
    /// Column for lookup table values.
    pub lookup: TableColumn,
    /// Defines the number of bits represented in the lookup table [0,2^<sup>lookup_bits</sup>).
    lookup_bits: usize,
    /// Gate Strategy used for specifying advice values.
    _strategy: RangeStrategy,
}

impl<F: ScalarField> RangeConfig<F> {
    /// Generates a new [RangeConfig] with the specified parameters.
    ///
    /// If `num_columns` is 0, then we assume you do not want to perform any lookups in that phase.
    ///
    /// Panics if `lookup_bits` > 28.
    /// * `meta`: [ConstraintSystem] of the circuit
    /// * `range_strategy`: [GateStrategy] of the range chip
    /// * `num_advice`: Number of [Advice] [Column]s without lookup enabled in each phase
    /// * `num_lookup_advice`: Number of `lookup_advice` [Column]s in each phase
    /// * `num_fixed`: Number of fixed [Column]s in each phase
    /// * `lookup_bits`: Number of bits represented in the LookUp table [0,2^lookup_bits)
    /// * `circuit_degree`: Degree that expresses the size of circuit (i.e., 2^<sup>circuit_degree</sup> is the number of rows in the circuit)
    pub fn configure(
        meta: &mut ConstraintSystem<F>,
        range_strategy: RangeStrategy,
        num_advice: &[usize],
        num_lookup_advice: &[usize],
        num_fixed: usize,
        lookup_bits: usize,
        // params.k()
        circuit_degree: usize,
    ) -> Self {
        assert!(lookup_bits <= 28);
        let lookup = meta.lookup_table_column();

        let gate = FlexGateConfig::configure(
            meta,
            match range_strategy {
                RangeStrategy::Vertical => GateStrategy::Vertical,
            },
            num_advice,
            num_fixed,
            circuit_degree,
        );

        // For now, we apply the same range lookup table to each phase
        let mut q_lookup = Vec::new();
        let mut lookup_advice = [(); MAX_PHASE].map(|_| Vec::new());
        for (phase, &num_columns) in num_lookup_advice.iter().enumerate() {
            // if num_columns is set to 0, then we assume you do not want to perform any lookups in that phase
            if num_advice[phase] == 1 && num_columns != 0 {
                q_lookup.push(Some(meta.complex_selector()));
            } else {
                q_lookup.push(None);
                for _ in 0..num_columns {
                    let a = match phase {
                        0 => meta.advice_column(),
                        1 => meta.advice_column_in(SecondPhase),
                        2 => meta.advice_column_in(ThirdPhase),
                        _ => panic!("Currently RangeConfig only supports {MAX_PHASE} phases"),
                    };
                    meta.enable_equality(a);
                    lookup_advice[phase].push(a);
                }
            }
        }

        let mut config =
            Self { lookup_advice, q_lookup, lookup, lookup_bits, gate, _strategy: range_strategy };

        // sanity check: only create lookup table if there are lookup_advice columns
        if !num_lookup_advice.is_empty() {
            config.create_lookup(meta);
        }
        config.gate.max_rows = (1 << circuit_degree) - meta.minimum_rows();
        assert!(
            (1 << lookup_bits) <= config.gate.max_rows,
            "lookup table is too large for the circuit degree plus blinding factors!"
        );

        config
    }

    /// Returns the number of bits represented in the lookup table [0,2^<sup>lookup_bits</sup>).
    pub fn lookup_bits(&self) -> usize {
        self.lookup_bits
    }

    /// Instantiates the lookup table of the circuit.
    /// * `meta`: [ConstraintSystem] of the circuit
    fn create_lookup(&self, meta: &mut ConstraintSystem<F>) {
        for (phase, q_l) in self.q_lookup.iter().enumerate() {
            if let Some(q) = q_l {
                meta.lookup("lookup", |meta| {
                    let q = meta.query_selector(*q);
                    // there should only be 1 advice column in phase `phase`
                    let a =
                        meta.query_advice(self.gate.basic_gates[phase][0].value, Rotation::cur());
                    vec![(q * a, self.lookup)]
                });
            }
        }
        //if multiple columns
        for la in self.lookup_advice.iter().flat_map(|advices| advices.iter()) {
            meta.lookup("lookup wo selector", |meta| {
                let a = meta.query_advice(*la, Rotation::cur());
                vec![(a, self.lookup)]
            });
        }
    }

    /// Loads the lookup table into the circuit using the provided `layouter`.
    /// * `layouter`: layouter for the circuit
    pub fn load_lookup_table(&self, layouter: &mut impl Layouter<F>) -> Result<(), Error> {
        layouter.assign_table(
            || format!("{} bit lookup", self.lookup_bits),
            |mut table| {
                for idx in 0..(1u32 << self.lookup_bits) {
                    table.assign_cell(
                        || "lookup table",
                        self.lookup,
                        idx as usize,
                        || Value::known(F::from(idx as u64)),
                    )?;
                }
                Ok(())
            },
        )?;
        Ok(())
    }
}

/// Trait that implements methods to constrain a field element number `x` is within a range of bits.
pub trait RangeInstructions<F: ScalarField> {
    /// The type of Gate used within the instructions.
    type Gate: GateInstructions<F>;

    /// Returns the type of gate used.
    fn gate(&self) -> &Self::Gate;

    /// Returns the [GateStrategy] for this range.
    fn strategy(&self) -> RangeStrategy;

    /// Returns the number of bits the lookup table represents.
    fn lookup_bits(&self) -> usize;

    /// Checks and constrains that `a` lies in the range [0, 2<sup>range_bits</sup>).
    ///
    /// Assumes that both `a`<= `range_bits` bits.
    /// * a: [AssignedValue] value to be range checked
    /// * range_bits: number of bits to represent the range
    fn range_check(&self, ctx: &mut Context<F>, a: AssignedValue<F>, range_bits: usize);

    /// Constrains that 'a' is less than 'b'.
    ///
    /// Assumes that `a` and `b` have bit length <= num_bits bits.
    ///
    /// Note: This may fail silently if a or b have more than num_bits.
    /// * a: [QuantumCell] value to check
    /// * b: upper bound expressed as a [QuantumCell]
    /// * num_bits: number of bits used to represent the values of `a` and `b`
    fn check_less_than(
        &self,
        ctx: &mut Context<F>,
        a: impl Into<QuantumCell<F>>,
        b: impl Into<QuantumCell<F>>,
        num_bits: usize,
    );

    /// Performs a range check that `a` has at most `bit_length(b)` bits and then constrains that `a` is less than `b`.
    ///
    /// * a: [AssignedValue] value to check
    /// * b: upper bound expressed as a [u64] value
    fn check_less_than_safe(&self, ctx: &mut Context<F>, a: AssignedValue<F>, b: u64) {
        let range_bits =
            (bit_length(b) + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();

        self.range_check(ctx, a, range_bits);
        self.check_less_than(ctx, a, Constant(self.gate().get_field_element(b)), range_bits)
    }

    /// Performs a range check that `a` has at most `bit_length(b)` bits and then constrains that `a` is less than `b`.
    ///
    /// * a: [AssignedValue] value to check
    /// * b: upper bound expressed as a [BigUint] value
    fn check_big_less_than_safe(&self, ctx: &mut Context<F>, a: AssignedValue<F>, b: BigUint)
    where
        F: BigPrimeField,
    {
        let range_bits =
            (b.bits() as usize + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();

        self.range_check(ctx, a, range_bits);
        self.check_less_than(ctx, a, Constant(biguint_to_fe(&b)), range_bits)
    }

    /// Constrains whether `a` is in `[0, b)`, and returns 1 if `a` < `b`, otherwise 0.
    ///
    /// Assumes that`a` and `b` are known to have <= num_bits bits.
    /// * a: first [QuantumCell] to compare
    /// * b: second [QuantumCell] to compare
    /// * num_bits: number of bits to represent the values
    fn is_less_than(
        &self,
        ctx: &mut Context<F>,
        a: impl Into<QuantumCell<F>>,
        b: impl Into<QuantumCell<F>>,
        num_bits: usize,
    ) -> AssignedValue<F>;

    /// Performs a range check that `a` has at most `ceil(bit_length(b) / lookup_bits) * lookup_bits` and then constrains that `a` is in `[0,b)`.
    ///
    /// Returns 1 if `a` < `b`, otherwise 0.
    ///
    /// * a: [AssignedValue] value to check
    /// * b: upper bound as [u64] value
    fn is_less_than_safe(
        &self,
        ctx: &mut Context<F>,
        a: AssignedValue<F>,
        b: u64,
    ) -> AssignedValue<F> {
        let range_bits =
            (bit_length(b) + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();

        self.range_check(ctx, a, range_bits);
        self.is_less_than(ctx, a, Constant(self.gate().get_field_element(b)), range_bits)
    }

    /// Performs a range check that `a` has at most `ceil(b.bits() / lookup_bits) * lookup_bits` bits and then constrains that `a` is in `[0,b)`.
    ///
    /// Returns 1 if `a` < `b`, otherwise 0.
    ///
    /// * a: [AssignedValue] value to check
    /// * b: upper bound as [BigUint] value
    ///
    /// For the current implementation using [`is_less_than`], we require `ceil(b.bits() / lookup_bits) + 1 < F::NUM_BITS / lookup_bits`
    fn is_big_less_than_safe(
        &self,
        ctx: &mut Context<F>,
        a: AssignedValue<F>,
        b: BigUint,
    ) -> AssignedValue<F>
    where
        F: BigPrimeField,
    {
        let range_bits =
            (b.bits() as usize + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();

        self.range_check(ctx, a, range_bits);
        self.is_less_than(ctx, a, Constant(biguint_to_fe(&b)), range_bits)
    }

    /// Constrains and returns `(c, r)` such that `a = b * c + r`.
    ///
    /// Assumes that `b != 0` and that `a` has <= `a_num_bits` bits.
    /// * a: [QuantumCell] value to divide
    /// * b: [BigUint] value to divide by
    /// * a_num_bits: number of bits needed to represent the value of `a`
    fn div_mod(
        &self,
        ctx: &mut Context<F>,
        a: impl Into<QuantumCell<F>>,
        b: impl Into<BigUint>,
        a_num_bits: usize,
    ) -> (AssignedValue<F>, AssignedValue<F>)
    where
        F: BigPrimeField,
    {
        let a = a.into();
        let b = b.into();
        let a_val = fe_to_biguint(a.value());
        let (div, rem) = a_val.div_mod_floor(&b);
        let [div, rem] = [div, rem].map(|v| biguint_to_fe(&v));
        ctx.assign_region([Witness(rem), Constant(biguint_to_fe(&b)), Witness(div), a], [0]);
        let rem = ctx.get(-4);
        let div = ctx.get(-2);
        // Constrain that a_num_bits fulfills `div < 2 ** a_num_bits / b`.
        self.check_big_less_than_safe(
            ctx,
            div,
            BigUint::one().shl(a_num_bits as u32) / &b + BigUint::one(),
        );
        // Constrain that remainder is less than divisor (i.e. `r < b`).
        self.check_big_less_than_safe(ctx, rem, b);
        (div, rem)
    }

    /// Constrains and returns `(c, r)` such that `a = b * c + r`.
    ///
    /// Assumes:
    /// that `b != 0`.
    /// that `a` has <= `a_num_bits` bits.
    /// that `b` has <= `b_num_bits` bits.
    ///
    /// Note:
    /// Let `X = 2 ** b_num_bits`
    /// Write `a = a1 * X + a0` and `c = c1 * X + c0`
    /// If we write `b * c0 + r = d1 * X + d0` then
    ///     `b * c + r = (b * c1 + d1) * X + d0`
    /// * a: [QuantumCell] value to divide
    /// * b: [QuantumCell] value to divide by
    /// * a_num_bits: number of bits needed to represent the value of `a`
    /// * b_num_bits: number of bits needed to represent the value of `b`
    ///
    fn div_mod_var(
        &self,
        ctx: &mut Context<F>,
        a: impl Into<QuantumCell<F>>,
        b: impl Into<QuantumCell<F>>,
        a_num_bits: usize,
        b_num_bits: usize,
    ) -> (AssignedValue<F>, AssignedValue<F>)
    where
        F: BigPrimeField,
    {
        let a = a.into();
        let b = b.into();
        let a_val = fe_to_biguint(a.value());
        let b_val = fe_to_biguint(b.value());
        let (div, rem) = a_val.div_mod_floor(&b_val);
        let x = BigUint::one().shl(b_num_bits as u32);
        let (div_hi, div_lo) = div.div_mod_floor(&x);

        let x_fe = self.gate().pow_of_two()[b_num_bits];
        let [div, div_hi, div_lo, rem] = [div, div_hi, div_lo, rem].map(|v| biguint_to_fe(&v));
        ctx.assign_region(
            [Witness(div_lo), Witness(div_hi), Constant(x_fe), Witness(div), Witness(rem)],
            [0],
        );
        let [div_lo, div_hi, div, rem] = [-5, -4, -2, -1].map(|i| ctx.get(i));
        self.range_check(ctx, div_lo, b_num_bits);
        if a_num_bits <= b_num_bits {
            self.gate().assert_is_const(ctx, &div_hi, &F::zero());
        } else {
            self.range_check(ctx, div_hi, a_num_bits - b_num_bits);
        }

        let (bcr0_hi, bcr0_lo) = {
            let bcr0 = self.gate().mul_add(ctx, b, Existing(div_lo), Existing(rem));
            self.div_mod(ctx, Existing(bcr0), x.clone(), a_num_bits)
        };
        let bcr_hi = self.gate().mul_add(ctx, b, Existing(div_hi), Existing(bcr0_hi));

        let (a_hi, a_lo) = self.div_mod(ctx, a, x, a_num_bits);
        ctx.constrain_equal(&bcr_hi, &a_hi);
        ctx.constrain_equal(&bcr0_lo, &a_lo);

        self.range_check(ctx, rem, b_num_bits);
        self.check_less_than(ctx, Existing(rem), b, b_num_bits);
        (div, rem)
    }

    /// Constrains and returns the last bit of the value of `a`.
    ///
    /// Assume `a` has been range checked already to `limb_bits` bits.
    /// * a: [AssignedValue] value to get the last bit of
    /// * limb_bits: number of bits in a limb
    fn get_last_bit(
        &self,
        ctx: &mut Context<F>,
        a: AssignedValue<F>,
        limb_bits: usize,
    ) -> AssignedValue<F> {
        let a_big = fe_to_biguint(a.value());
        let bit_v = F::from(a_big.bit(0));
        let two = self.gate().get_field_element(2u64);
        let h_v = F::from_bytes_le(&(a_big >> 1usize).to_bytes_le());

        ctx.assign_region([Witness(bit_v), Witness(h_v), Constant(two), Existing(a)], [0]);
        let half = ctx.get(-3);
        let bit = ctx.get(-4);

        self.range_check(ctx, half, limb_bits - 1);
        self.gate().assert_bit(ctx, bit);
        bit
    }
}

/// A chip that implements RangeInstructions which provides methods to constrain a field element `x` is within a range of bits.
#[derive(Clone, Debug)]
pub struct RangeChip<F: ScalarField> {
    /// # RangeChip
    /// Provides methods to constrain a field element `x` is within a range of  bits.
    /// Declares a lookup table of [0, 2<sup>lookup_bits</sup>) and constrains whether a field element appears in this table.

    /// [GateStrategy] for advice values in this chip.
    strategy: RangeStrategy,
    /// Underlying [GateChip] for this chip.
    pub gate: GateChip<F>,
    /// Defines the number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>).
    pub lookup_bits: usize,
    /// [Vec] of powers of `2 ** lookup_bits` represented as [QuantumCell::Constant].
    /// These are precomputed and cached as a performance optimization for later limb decompositions. We precompute up to the higher power that fits in `F`, which is `2 ** ((F::CAPACITY / lookup_bits) * lookup_bits)`.
    pub limb_bases: Vec<QuantumCell<F>>,
}

impl<F: ScalarField> RangeChip<F> {
    /// Creates a new [RangeChip] with the given strategy and lookup_bits.
    /// * strategy: [GateStrategy] for advice values in this chip
    /// * lookup_bits: number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>)
    pub fn new(strategy: RangeStrategy, lookup_bits: usize) -> Self {
        let limb_base = F::from(1u64 << lookup_bits);
        let mut running_base = limb_base;
        let num_bases = F::CAPACITY as usize / lookup_bits;
        let mut limb_bases = Vec::with_capacity(num_bases + 1);
        limb_bases.extend([Constant(F::one()), Constant(running_base)]);
        for _ in 2..=num_bases {
            running_base *= &limb_base;
            limb_bases.push(Constant(running_base));
        }
        let gate = GateChip::new(match strategy {
            RangeStrategy::Vertical => GateStrategy::Vertical,
        });

        Self { strategy, gate, lookup_bits, limb_bases }
    }

    /// Creates a new [RangeChip] with the default strategy and provided lookup_bits.
    /// * lookup_bits: number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>)
    pub fn default(lookup_bits: usize) -> Self {
        Self::new(RangeStrategy::Vertical, lookup_bits)
    }
}

impl<F: ScalarField> RangeInstructions<F> for RangeChip<F> {
    type Gate = GateChip<F>;

    /// The type of Gate used in this chip.
    fn gate(&self) -> &Self::Gate {
        &self.gate
    }

    /// Returns the [GateStrategy] for this range.
    fn strategy(&self) -> RangeStrategy {
        self.strategy
    }

    /// Defines the number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>).
    fn lookup_bits(&self) -> usize {
        self.lookup_bits
    }

    /// Checks and constrains that `a` lies in the range [0, 2<sup>range_bits</sup>).
    ///
    /// This is done by decomposing `a` into `k` limbs, where `k = ceil(range_bits / lookup_bits)`.
    /// Each limb is constrained to be within the range [0, 2<sup>lookup_bits</sup>).
    /// The limbs are then combined to form `a` again with the last limb having `rem_bits` number of bits.
    ///
    /// * `a`: [AssignedValue] value to be range checked
    /// * `range_bits`: number of bits in the range
    /// * `lookup_bits`: number of bits in the lookup table
    ///
    /// # Assumptions
    /// * `ceil(range_bits / lookup_bits) * lookup_bits <= F::CAPACITY`
    fn range_check(&self, ctx: &mut Context<F>, a: AssignedValue<F>, range_bits: usize) {
        if range_bits == 0 {
            self.gate.assert_is_const(ctx, &a, &F::zero());
            return;
        }
        // the number of limbs
        let k = (range_bits + self.lookup_bits - 1) / self.lookup_bits;
        // println!("range check {} bits {} len", range_bits, k);
        let rem_bits = range_bits % self.lookup_bits;

        debug_assert!(self.limb_bases.len() >= k);

        if k == 1 {
            ctx.cells_to_lookup.push(a);
        } else {
            let limbs = decompose_fe_to_u64_limbs(a.value(), k, self.lookup_bits)
                .into_iter()
                .map(|x| Witness(F::from(x)));
            let row_offset = ctx.advice.len() as isize;
            let acc = self.gate.inner_product(ctx, limbs, self.limb_bases[..k].to_vec());
            // the inner product above must equal `a`
            ctx.constrain_equal(&a, &acc);
            // we fetch the cells to lookup by getting the indices where `limbs` were assigned in `inner_product`. Because `limb_bases[0]` is 1, the progression of indices is 0,1,4,...,4+3*i
            ctx.cells_to_lookup.push(ctx.get(row_offset));
            for i in 0..k - 1 {
                ctx.cells_to_lookup.push(ctx.get(row_offset + 1 + 3 * i as isize));
            }
        };

        // additional constraints for the last limb if rem_bits != 0
        match rem_bits.cmp(&1) {
            // we want to check x := limbs[k-1] is boolean
            // we constrain x*(x-1) = 0 + x * x - x == 0
            // | 0 | x | x | x |
            Ordering::Equal => {
                self.gate.assert_bit(ctx, *ctx.cells_to_lookup.last().unwrap());
            }
            Ordering::Greater => {
                let mult_val = self.gate.pow_of_two[self.lookup_bits - rem_bits];
                let check =
                    self.gate.mul(ctx, *ctx.cells_to_lookup.last().unwrap(), Constant(mult_val));
                ctx.cells_to_lookup.push(check);
            }
            _ => {}
        }
    }

    /// Constrains that 'a' is less than 'b'.
    ///
    /// Assumes that`a` and `b` are known to have <= num_bits bits.
    ///
    /// Note: This may fail silently if a or b have more than num_bits
    /// * a: [QuantumCell] value to check
    /// * b: upper bound expressed as a [QuantumCell]
    /// * num_bits: number of bits to represent the values
    fn check_less_than(
        &self,
        ctx: &mut Context<F>,
        a: impl Into<QuantumCell<F>>,
        b: impl Into<QuantumCell<F>>,
        num_bits: usize,
    ) {
        let a = a.into();
        let b = b.into();
        let pow_of_two = self.gate.pow_of_two[num_bits];
        let check_cell = match self.strategy {
            RangeStrategy::Vertical => {
                let shift_a_val = pow_of_two + a.value();
                // | a + 2^(num_bits) - b | b | 1 | a + 2^(num_bits) | - 2^(num_bits) | 1 | a |
                let cells = [
                    Witness(shift_a_val - b.value()),
                    b,
                    Constant(F::one()),
                    Witness(shift_a_val),
                    Constant(-pow_of_two),
                    Constant(F::one()),
                    a,
                ];
                ctx.assign_region(cells, [0, 3]);
                ctx.get(-7)
            }
        };

        self.range_check(ctx, check_cell, num_bits);
    }

    /// Constrains whether `a` is in `[0, b)`, and returns 1 if `a` < `b`, otherwise 0.
    ///
    /// * a: first [QuantumCell] to compare
    /// * b: second [QuantumCell] to compare
    /// * num_bits: number of bits to represent the values
    ///
    /// # Assumptions
    /// * `a` and `b` are known to have `<= num_bits` bits.
    /// * (`ceil(num_bits / lookup_bits) + 1) * lookup_bits <= F::CAPACITY`
    fn is_less_than(
        &self,
        ctx: &mut Context<F>,
        a: impl Into<QuantumCell<F>>,
        b: impl Into<QuantumCell<F>>,
        num_bits: usize,
    ) -> AssignedValue<F> {
        let a = a.into();
        let b = b.into();

        let k = (num_bits + self.lookup_bits - 1) / self.lookup_bits;
        let padded_bits = k * self.lookup_bits;
        debug_assert!(
            padded_bits + self.lookup_bits <= F::CAPACITY as usize,
            "num_bits is too large for this is_less_than implementation"
        );
        let pow_padded = self.gate.pow_of_two[padded_bits];

        let shift_a_val = pow_padded + a.value();
        let shifted_val = shift_a_val - b.value();
        let shifted_cell = match self.strategy {
            RangeStrategy::Vertical => {
                ctx.assign_region(
                    [
                        Witness(shifted_val),
                        b,
                        Constant(F::one()),
                        Witness(shift_a_val),
                        Constant(-pow_padded),
                        Constant(F::one()),
                        a,
                    ],
                    [0, 3],
                );
                ctx.get(-7)
            }
        };

        // check whether a - b + 2^padded_bits < 2^padded_bits ?
        // since assuming a, b < 2^padded_bits we are guaranteed a - b + 2^padded_bits < 2^{padded_bits + 1}
        self.range_check(ctx, shifted_cell, padded_bits + self.lookup_bits);
        // ctx.cells_to_lookup.last() will have the (k + 1)-th limb of `a - b + 2^{k * limb_bits}`, which is zero iff `a < b`
        self.gate.is_zero(ctx, *ctx.cells_to_lookup.last().unwrap())
    }
}