1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
use crate::{
gates::flex_gate::{FlexGateConfig, GateInstructions, GateStrategy, MAX_PHASE},
halo2_proofs::{
circuit::{Layouter, Value},
plonk::{
Advice, Column, ConstraintSystem, Error, SecondPhase, Selector, TableColumn, ThirdPhase,
},
poly::Rotation,
},
utils::{
biguint_to_fe, bit_length, decompose_fe_to_u64_limbs, fe_to_biguint, BigPrimeField,
ScalarField,
},
AssignedValue, Context,
QuantumCell::{self, Constant, Existing, Witness},
};
use num_bigint::BigUint;
use num_integer::Integer;
use num_traits::One;
use std::{cmp::Ordering, ops::Shl};
use super::flex_gate::GateChip;
/// Specifies the gate strategy for the range chip
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RangeStrategy {
/// # Vertical Gate Strategy:
/// `q_0 * (a + b * c - d) = 0`
/// where
/// * a = value[0], b = value[1], c = value[2], d = value[3]
/// * q = q_lookup[0]
/// * q is either 0 or 1 so this is just a simple selector
///
/// Using `a + b * c` instead of `a * b + c` allows for "chaining" of gates, i.e., the output of one gate becomes `a` in the next gate.
Vertical, // vanilla implementation with vertical basic gate(s)
}
/// Configuration for Range Chip
#[derive(Clone, Debug)]
pub struct RangeConfig<F: ScalarField> {
/// Underlying Gate Configuration
pub gate: FlexGateConfig<F>,
/// Special advice (witness) Columns used only for lookup tables.
///
/// Each phase of a halo2 circuit has a distinct lookup_advice column.
///
/// * If `gate` has only 1 advice column, lookups are enabled for that column, in which case `lookup_advice` is empty
/// * If `gate` has more than 1 advice column some number of user-specified `lookup_advice` columns are added
/// * In this case, we don't need a selector so `q_lookup` is empty
pub lookup_advice: [Vec<Column<Advice>>; MAX_PHASE],
/// Selector values for the lookup table.
pub q_lookup: Vec<Option<Selector>>,
/// Column for lookup table values.
pub lookup: TableColumn,
/// Defines the number of bits represented in the lookup table [0,2^<sup>lookup_bits</sup>).
lookup_bits: usize,
/// Gate Strategy used for specifying advice values.
_strategy: RangeStrategy,
}
impl<F: ScalarField> RangeConfig<F> {
/// Generates a new [RangeConfig] with the specified parameters.
///
/// If `num_columns` is 0, then we assume you do not want to perform any lookups in that phase.
///
/// Panics if `lookup_bits` > 28.
/// * `meta`: [ConstraintSystem] of the circuit
/// * `range_strategy`: [GateStrategy] of the range chip
/// * `num_advice`: Number of [Advice] [Column]s without lookup enabled in each phase
/// * `num_lookup_advice`: Number of `lookup_advice` [Column]s in each phase
/// * `num_fixed`: Number of fixed [Column]s in each phase
/// * `lookup_bits`: Number of bits represented in the LookUp table [0,2^lookup_bits)
/// * `circuit_degree`: Degree that expresses the size of circuit (i.e., 2^<sup>circuit_degree</sup> is the number of rows in the circuit)
pub fn configure(
meta: &mut ConstraintSystem<F>,
range_strategy: RangeStrategy,
num_advice: &[usize],
num_lookup_advice: &[usize],
num_fixed: usize,
lookup_bits: usize,
// params.k()
circuit_degree: usize,
) -> Self {
assert!(lookup_bits <= 28);
let lookup = meta.lookup_table_column();
let gate = FlexGateConfig::configure(
meta,
match range_strategy {
RangeStrategy::Vertical => GateStrategy::Vertical,
},
num_advice,
num_fixed,
circuit_degree,
);
// For now, we apply the same range lookup table to each phase
let mut q_lookup = Vec::new();
let mut lookup_advice = [(); MAX_PHASE].map(|_| Vec::new());
for (phase, &num_columns) in num_lookup_advice.iter().enumerate() {
// if num_columns is set to 0, then we assume you do not want to perform any lookups in that phase
if num_advice[phase] == 1 && num_columns != 0 {
q_lookup.push(Some(meta.complex_selector()));
} else {
q_lookup.push(None);
for _ in 0..num_columns {
let a = match phase {
0 => meta.advice_column(),
1 => meta.advice_column_in(SecondPhase),
2 => meta.advice_column_in(ThirdPhase),
_ => panic!("Currently RangeConfig only supports {MAX_PHASE} phases"),
};
meta.enable_equality(a);
lookup_advice[phase].push(a);
}
}
}
let mut config =
Self { lookup_advice, q_lookup, lookup, lookup_bits, gate, _strategy: range_strategy };
// sanity check: only create lookup table if there are lookup_advice columns
if !num_lookup_advice.is_empty() {
config.create_lookup(meta);
}
config.gate.max_rows = (1 << circuit_degree) - meta.minimum_rows();
assert!(
(1 << lookup_bits) <= config.gate.max_rows,
"lookup table is too large for the circuit degree plus blinding factors!"
);
config
}
/// Returns the number of bits represented in the lookup table [0,2^<sup>lookup_bits</sup>).
pub fn lookup_bits(&self) -> usize {
self.lookup_bits
}
/// Instantiates the lookup table of the circuit.
/// * `meta`: [ConstraintSystem] of the circuit
fn create_lookup(&self, meta: &mut ConstraintSystem<F>) {
for (phase, q_l) in self.q_lookup.iter().enumerate() {
if let Some(q) = q_l {
meta.lookup("lookup", |meta| {
let q = meta.query_selector(*q);
// there should only be 1 advice column in phase `phase`
let a =
meta.query_advice(self.gate.basic_gates[phase][0].value, Rotation::cur());
vec![(q * a, self.lookup)]
});
}
}
//if multiple columns
for la in self.lookup_advice.iter().flat_map(|advices| advices.iter()) {
meta.lookup("lookup wo selector", |meta| {
let a = meta.query_advice(*la, Rotation::cur());
vec![(a, self.lookup)]
});
}
}
/// Loads the lookup table into the circuit using the provided `layouter`.
/// * `layouter`: layouter for the circuit
pub fn load_lookup_table(&self, layouter: &mut impl Layouter<F>) -> Result<(), Error> {
layouter.assign_table(
|| format!("{} bit lookup", self.lookup_bits),
|mut table| {
for idx in 0..(1u32 << self.lookup_bits) {
table.assign_cell(
|| "lookup table",
self.lookup,
idx as usize,
|| Value::known(F::from(idx as u64)),
)?;
}
Ok(())
},
)?;
Ok(())
}
}
/// Trait that implements methods to constrain a field element number `x` is within a range of bits.
pub trait RangeInstructions<F: ScalarField> {
/// The type of Gate used within the instructions.
type Gate: GateInstructions<F>;
/// Returns the type of gate used.
fn gate(&self) -> &Self::Gate;
/// Returns the [GateStrategy] for this range.
fn strategy(&self) -> RangeStrategy;
/// Returns the number of bits the lookup table represents.
fn lookup_bits(&self) -> usize;
/// Checks and constrains that `a` lies in the range [0, 2<sup>range_bits</sup>).
///
/// Assumes that both `a`<= `range_bits` bits.
/// * a: [AssignedValue] value to be range checked
/// * range_bits: number of bits to represent the range
fn range_check(&self, ctx: &mut Context<F>, a: AssignedValue<F>, range_bits: usize);
/// Constrains that 'a' is less than 'b'.
///
/// Assumes that `a` and `b` have bit length <= num_bits bits.
///
/// Note: This may fail silently if a or b have more than num_bits.
/// * a: [QuantumCell] value to check
/// * b: upper bound expressed as a [QuantumCell]
/// * num_bits: number of bits used to represent the values of `a` and `b`
fn check_less_than(
&self,
ctx: &mut Context<F>,
a: impl Into<QuantumCell<F>>,
b: impl Into<QuantumCell<F>>,
num_bits: usize,
);
/// Performs a range check that `a` has at most `bit_length(b)` bits and then constrains that `a` is less than `b`.
///
/// * a: [AssignedValue] value to check
/// * b: upper bound expressed as a [u64] value
fn check_less_than_safe(&self, ctx: &mut Context<F>, a: AssignedValue<F>, b: u64) {
let range_bits =
(bit_length(b) + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();
self.range_check(ctx, a, range_bits);
self.check_less_than(ctx, a, Constant(self.gate().get_field_element(b)), range_bits)
}
/// Performs a range check that `a` has at most `bit_length(b)` bits and then constrains that `a` is less than `b`.
///
/// * a: [AssignedValue] value to check
/// * b: upper bound expressed as a [BigUint] value
fn check_big_less_than_safe(&self, ctx: &mut Context<F>, a: AssignedValue<F>, b: BigUint)
where
F: BigPrimeField,
{
let range_bits =
(b.bits() as usize + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();
self.range_check(ctx, a, range_bits);
self.check_less_than(ctx, a, Constant(biguint_to_fe(&b)), range_bits)
}
/// Constrains whether `a` is in `[0, b)`, and returns 1 if `a` < `b`, otherwise 0.
///
/// Assumes that`a` and `b` are known to have <= num_bits bits.
/// * a: first [QuantumCell] to compare
/// * b: second [QuantumCell] to compare
/// * num_bits: number of bits to represent the values
fn is_less_than(
&self,
ctx: &mut Context<F>,
a: impl Into<QuantumCell<F>>,
b: impl Into<QuantumCell<F>>,
num_bits: usize,
) -> AssignedValue<F>;
/// Performs a range check that `a` has at most `ceil(bit_length(b) / lookup_bits) * lookup_bits` and then constrains that `a` is in `[0,b)`.
///
/// Returns 1 if `a` < `b`, otherwise 0.
///
/// * a: [AssignedValue] value to check
/// * b: upper bound as [u64] value
fn is_less_than_safe(
&self,
ctx: &mut Context<F>,
a: AssignedValue<F>,
b: u64,
) -> AssignedValue<F> {
let range_bits =
(bit_length(b) + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();
self.range_check(ctx, a, range_bits);
self.is_less_than(ctx, a, Constant(self.gate().get_field_element(b)), range_bits)
}
/// Performs a range check that `a` has at most `ceil(b.bits() / lookup_bits) * lookup_bits` bits and then constrains that `a` is in `[0,b)`.
///
/// Returns 1 if `a` < `b`, otherwise 0.
///
/// * a: [AssignedValue] value to check
/// * b: upper bound as [BigUint] value
///
/// For the current implementation using [`is_less_than`], we require `ceil(b.bits() / lookup_bits) + 1 < F::NUM_BITS / lookup_bits`
fn is_big_less_than_safe(
&self,
ctx: &mut Context<F>,
a: AssignedValue<F>,
b: BigUint,
) -> AssignedValue<F>
where
F: BigPrimeField,
{
let range_bits =
(b.bits() as usize + self.lookup_bits() - 1) / self.lookup_bits() * self.lookup_bits();
self.range_check(ctx, a, range_bits);
self.is_less_than(ctx, a, Constant(biguint_to_fe(&b)), range_bits)
}
/// Constrains and returns `(c, r)` such that `a = b * c + r`.
///
/// Assumes that `b != 0` and that `a` has <= `a_num_bits` bits.
/// * a: [QuantumCell] value to divide
/// * b: [BigUint] value to divide by
/// * a_num_bits: number of bits needed to represent the value of `a`
fn div_mod(
&self,
ctx: &mut Context<F>,
a: impl Into<QuantumCell<F>>,
b: impl Into<BigUint>,
a_num_bits: usize,
) -> (AssignedValue<F>, AssignedValue<F>)
where
F: BigPrimeField,
{
let a = a.into();
let b = b.into();
let a_val = fe_to_biguint(a.value());
let (div, rem) = a_val.div_mod_floor(&b);
let [div, rem] = [div, rem].map(|v| biguint_to_fe(&v));
ctx.assign_region([Witness(rem), Constant(biguint_to_fe(&b)), Witness(div), a], [0]);
let rem = ctx.get(-4);
let div = ctx.get(-2);
// Constrain that a_num_bits fulfills `div < 2 ** a_num_bits / b`.
self.check_big_less_than_safe(
ctx,
div,
BigUint::one().shl(a_num_bits as u32) / &b + BigUint::one(),
);
// Constrain that remainder is less than divisor (i.e. `r < b`).
self.check_big_less_than_safe(ctx, rem, b);
(div, rem)
}
/// Constrains and returns `(c, r)` such that `a = b * c + r`.
///
/// Assumes:
/// that `b != 0`.
/// that `a` has <= `a_num_bits` bits.
/// that `b` has <= `b_num_bits` bits.
///
/// Note:
/// Let `X = 2 ** b_num_bits`
/// Write `a = a1 * X + a0` and `c = c1 * X + c0`
/// If we write `b * c0 + r = d1 * X + d0` then
/// `b * c + r = (b * c1 + d1) * X + d0`
/// * a: [QuantumCell] value to divide
/// * b: [QuantumCell] value to divide by
/// * a_num_bits: number of bits needed to represent the value of `a`
/// * b_num_bits: number of bits needed to represent the value of `b`
///
fn div_mod_var(
&self,
ctx: &mut Context<F>,
a: impl Into<QuantumCell<F>>,
b: impl Into<QuantumCell<F>>,
a_num_bits: usize,
b_num_bits: usize,
) -> (AssignedValue<F>, AssignedValue<F>)
where
F: BigPrimeField,
{
let a = a.into();
let b = b.into();
let a_val = fe_to_biguint(a.value());
let b_val = fe_to_biguint(b.value());
let (div, rem) = a_val.div_mod_floor(&b_val);
let x = BigUint::one().shl(b_num_bits as u32);
let (div_hi, div_lo) = div.div_mod_floor(&x);
let x_fe = self.gate().pow_of_two()[b_num_bits];
let [div, div_hi, div_lo, rem] = [div, div_hi, div_lo, rem].map(|v| biguint_to_fe(&v));
ctx.assign_region(
[Witness(div_lo), Witness(div_hi), Constant(x_fe), Witness(div), Witness(rem)],
[0],
);
let [div_lo, div_hi, div, rem] = [-5, -4, -2, -1].map(|i| ctx.get(i));
self.range_check(ctx, div_lo, b_num_bits);
if a_num_bits <= b_num_bits {
self.gate().assert_is_const(ctx, &div_hi, &F::zero());
} else {
self.range_check(ctx, div_hi, a_num_bits - b_num_bits);
}
let (bcr0_hi, bcr0_lo) = {
let bcr0 = self.gate().mul_add(ctx, b, Existing(div_lo), Existing(rem));
self.div_mod(ctx, Existing(bcr0), x.clone(), a_num_bits)
};
let bcr_hi = self.gate().mul_add(ctx, b, Existing(div_hi), Existing(bcr0_hi));
let (a_hi, a_lo) = self.div_mod(ctx, a, x, a_num_bits);
ctx.constrain_equal(&bcr_hi, &a_hi);
ctx.constrain_equal(&bcr0_lo, &a_lo);
self.range_check(ctx, rem, b_num_bits);
self.check_less_than(ctx, Existing(rem), b, b_num_bits);
(div, rem)
}
/// Constrains and returns the last bit of the value of `a`.
///
/// Assume `a` has been range checked already to `limb_bits` bits.
/// * a: [AssignedValue] value to get the last bit of
/// * limb_bits: number of bits in a limb
fn get_last_bit(
&self,
ctx: &mut Context<F>,
a: AssignedValue<F>,
limb_bits: usize,
) -> AssignedValue<F> {
let a_big = fe_to_biguint(a.value());
let bit_v = F::from(a_big.bit(0));
let two = self.gate().get_field_element(2u64);
let h_v = F::from_bytes_le(&(a_big >> 1usize).to_bytes_le());
ctx.assign_region([Witness(bit_v), Witness(h_v), Constant(two), Existing(a)], [0]);
let half = ctx.get(-3);
let bit = ctx.get(-4);
self.range_check(ctx, half, limb_bits - 1);
self.gate().assert_bit(ctx, bit);
bit
}
}
/// A chip that implements RangeInstructions which provides methods to constrain a field element `x` is within a range of bits.
#[derive(Clone, Debug)]
pub struct RangeChip<F: ScalarField> {
/// # RangeChip
/// Provides methods to constrain a field element `x` is within a range of bits.
/// Declares a lookup table of [0, 2<sup>lookup_bits</sup>) and constrains whether a field element appears in this table.
/// [GateStrategy] for advice values in this chip.
strategy: RangeStrategy,
/// Underlying [GateChip] for this chip.
pub gate: GateChip<F>,
/// Defines the number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>).
pub lookup_bits: usize,
/// [Vec] of powers of `2 ** lookup_bits` represented as [QuantumCell::Constant].
/// These are precomputed and cached as a performance optimization for later limb decompositions. We precompute up to the higher power that fits in `F`, which is `2 ** ((F::CAPACITY / lookup_bits) * lookup_bits)`.
pub limb_bases: Vec<QuantumCell<F>>,
}
impl<F: ScalarField> RangeChip<F> {
/// Creates a new [RangeChip] with the given strategy and lookup_bits.
/// * strategy: [GateStrategy] for advice values in this chip
/// * lookup_bits: number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>)
pub fn new(strategy: RangeStrategy, lookup_bits: usize) -> Self {
let limb_base = F::from(1u64 << lookup_bits);
let mut running_base = limb_base;
let num_bases = F::CAPACITY as usize / lookup_bits;
let mut limb_bases = Vec::with_capacity(num_bases + 1);
limb_bases.extend([Constant(F::one()), Constant(running_base)]);
for _ in 2..=num_bases {
running_base *= &limb_base;
limb_bases.push(Constant(running_base));
}
let gate = GateChip::new(match strategy {
RangeStrategy::Vertical => GateStrategy::Vertical,
});
Self { strategy, gate, lookup_bits, limb_bases }
}
/// Creates a new [RangeChip] with the default strategy and provided lookup_bits.
/// * lookup_bits: number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>)
pub fn default(lookup_bits: usize) -> Self {
Self::new(RangeStrategy::Vertical, lookup_bits)
}
}
impl<F: ScalarField> RangeInstructions<F> for RangeChip<F> {
type Gate = GateChip<F>;
/// The type of Gate used in this chip.
fn gate(&self) -> &Self::Gate {
&self.gate
}
/// Returns the [GateStrategy] for this range.
fn strategy(&self) -> RangeStrategy {
self.strategy
}
/// Defines the number of bits represented in the lookup table [0,2<sup>lookup_bits</sup>).
fn lookup_bits(&self) -> usize {
self.lookup_bits
}
/// Checks and constrains that `a` lies in the range [0, 2<sup>range_bits</sup>).
///
/// This is done by decomposing `a` into `k` limbs, where `k = ceil(range_bits / lookup_bits)`.
/// Each limb is constrained to be within the range [0, 2<sup>lookup_bits</sup>).
/// The limbs are then combined to form `a` again with the last limb having `rem_bits` number of bits.
///
/// * `a`: [AssignedValue] value to be range checked
/// * `range_bits`: number of bits in the range
/// * `lookup_bits`: number of bits in the lookup table
///
/// # Assumptions
/// * `ceil(range_bits / lookup_bits) * lookup_bits <= F::CAPACITY`
fn range_check(&self, ctx: &mut Context<F>, a: AssignedValue<F>, range_bits: usize) {
if range_bits == 0 {
self.gate.assert_is_const(ctx, &a, &F::zero());
return;
}
// the number of limbs
let k = (range_bits + self.lookup_bits - 1) / self.lookup_bits;
// println!("range check {} bits {} len", range_bits, k);
let rem_bits = range_bits % self.lookup_bits;
debug_assert!(self.limb_bases.len() >= k);
if k == 1 {
ctx.cells_to_lookup.push(a);
} else {
let limbs = decompose_fe_to_u64_limbs(a.value(), k, self.lookup_bits)
.into_iter()
.map(|x| Witness(F::from(x)));
let row_offset = ctx.advice.len() as isize;
let acc = self.gate.inner_product(ctx, limbs, self.limb_bases[..k].to_vec());
// the inner product above must equal `a`
ctx.constrain_equal(&a, &acc);
// we fetch the cells to lookup by getting the indices where `limbs` were assigned in `inner_product`. Because `limb_bases[0]` is 1, the progression of indices is 0,1,4,...,4+3*i
ctx.cells_to_lookup.push(ctx.get(row_offset));
for i in 0..k - 1 {
ctx.cells_to_lookup.push(ctx.get(row_offset + 1 + 3 * i as isize));
}
};
// additional constraints for the last limb if rem_bits != 0
match rem_bits.cmp(&1) {
// we want to check x := limbs[k-1] is boolean
// we constrain x*(x-1) = 0 + x * x - x == 0
// | 0 | x | x | x |
Ordering::Equal => {
self.gate.assert_bit(ctx, *ctx.cells_to_lookup.last().unwrap());
}
Ordering::Greater => {
let mult_val = self.gate.pow_of_two[self.lookup_bits - rem_bits];
let check =
self.gate.mul(ctx, *ctx.cells_to_lookup.last().unwrap(), Constant(mult_val));
ctx.cells_to_lookup.push(check);
}
_ => {}
}
}
/// Constrains that 'a' is less than 'b'.
///
/// Assumes that`a` and `b` are known to have <= num_bits bits.
///
/// Note: This may fail silently if a or b have more than num_bits
/// * a: [QuantumCell] value to check
/// * b: upper bound expressed as a [QuantumCell]
/// * num_bits: number of bits to represent the values
fn check_less_than(
&self,
ctx: &mut Context<F>,
a: impl Into<QuantumCell<F>>,
b: impl Into<QuantumCell<F>>,
num_bits: usize,
) {
let a = a.into();
let b = b.into();
let pow_of_two = self.gate.pow_of_two[num_bits];
let check_cell = match self.strategy {
RangeStrategy::Vertical => {
let shift_a_val = pow_of_two + a.value();
// | a + 2^(num_bits) - b | b | 1 | a + 2^(num_bits) | - 2^(num_bits) | 1 | a |
let cells = [
Witness(shift_a_val - b.value()),
b,
Constant(F::one()),
Witness(shift_a_val),
Constant(-pow_of_two),
Constant(F::one()),
a,
];
ctx.assign_region(cells, [0, 3]);
ctx.get(-7)
}
};
self.range_check(ctx, check_cell, num_bits);
}
/// Constrains whether `a` is in `[0, b)`, and returns 1 if `a` < `b`, otherwise 0.
///
/// * a: first [QuantumCell] to compare
/// * b: second [QuantumCell] to compare
/// * num_bits: number of bits to represent the values
///
/// # Assumptions
/// * `a` and `b` are known to have `<= num_bits` bits.
/// * (`ceil(num_bits / lookup_bits) + 1) * lookup_bits <= F::CAPACITY`
fn is_less_than(
&self,
ctx: &mut Context<F>,
a: impl Into<QuantumCell<F>>,
b: impl Into<QuantumCell<F>>,
num_bits: usize,
) -> AssignedValue<F> {
let a = a.into();
let b = b.into();
let k = (num_bits + self.lookup_bits - 1) / self.lookup_bits;
let padded_bits = k * self.lookup_bits;
debug_assert!(
padded_bits + self.lookup_bits <= F::CAPACITY as usize,
"num_bits is too large for this is_less_than implementation"
);
let pow_padded = self.gate.pow_of_two[padded_bits];
let shift_a_val = pow_padded + a.value();
let shifted_val = shift_a_val - b.value();
let shifted_cell = match self.strategy {
RangeStrategy::Vertical => {
ctx.assign_region(
[
Witness(shifted_val),
b,
Constant(F::one()),
Witness(shift_a_val),
Constant(-pow_padded),
Constant(F::one()),
a,
],
[0, 3],
);
ctx.get(-7)
}
};
// check whether a - b + 2^padded_bits < 2^padded_bits ?
// since assuming a, b < 2^padded_bits we are guaranteed a - b + 2^padded_bits < 2^{padded_bits + 1}
self.range_check(ctx, shifted_cell, padded_bits + self.lookup_bits);
// ctx.cells_to_lookup.last() will have the (k + 1)-th limb of `a - b + 2^{k * limb_bits}`, which is zero iff `a < b`
self.gate.is_zero(ctx, *ctx.cells_to_lookup.last().unwrap())
}
}